Вход/Регистрация
Логика и аргументация: Учебное пособие для вузов.
вернуться

Рузавин Георгий Иванович

Шрифт:

Нередко вместо термина "логическая правильность" мысли употребляется термин "логическая истинность", а для обозначения истинности в этом случае используется термин "фактическая или содержательная истинность". Очевидно, что хотя понятия правильности и истинности имеют противоположный смысл, их нельзя противопоставлять друг другу в абсолютном плане. Ведь в реальном процессе познания ориентированном на поиск и доказательство истины, одинаково важны как правильность рассуждений, так и фактическая истинность полученных результатов.

Правильность мысли есть необходимое, но недостаточно условие для установления её истинности. Чтобы быть истинной, мысль должна соответствовать действительности верно отражать ее.

Смешение этих понятий иногда может привести к противоречиям и ошибкам, особенно когда это касается абстрактных теорий. Известно, что вплоть до открытия неевклидовой геометрии Н.И. Лобачевским геометрия Евклида считалась единственно верным геометрически» учением об окружающем нас физическом пространстве. Если заменить в этой геометрии аксиому о параллельных на противоположную, т.е. допустить, что через точку вне данной прямой на плоскости можно провести к ней по крайней мере две параллельные линии, то полученная в результате этого неевклидова геометрия будет такой же логически непротиворечивой, т.е. правильной, как и обычная геометрия Евклида. Хотя с точки зрения логической правильности обе геометрии одинаково допустимы и равноценны, но теоремы неевклидовой геометрии кажутся весьма необычными человеку, воспитанному на геометрии Евклида. Так, сумма углов треугольника в геометрии Лобачевского меньше 180 градусов, а число параллельных, которые можно провести к данной прямой, бесконечно велико. По этим причинам геометрия Лобачевского встретила серьезное сопротивление со стороны традиционно мыслящих математиков и была признана лишь много времени спустя.

Но какая же из этих геометрий истинна? На этот вопрос можно получить ответ, только сопоставив их результаты с данными экспериментальных физических исследований, например измерив сумму внутренних углов треугольника, две вершины которого находятся на Земле, а третья, скажем, на Сириусе или иной звезде. Но для наших земных и околоземных расстояний расхождения между теорией и опытом пренебрежимо малы. Этот примечательный случай из истории геометрии показывает, насколько важно отличать логическую правильность от фактической истинности, когда речь идет о применении абстрактных теорий к реальному миру. Если логическая правильность, или, как говорят математики, непротиворечивость теории, может быть установлена логико-математическими методами, то ее фактическая истинность требует обращения к эмпирическим методам исследования, которые как раз и обнаруживают соответствие или расхождение выводов теории с действительностью.

1.5. Логика и язык

Язык, как известно, представляет собой средство коммуникации, общения между людьми, с помощью которого они обмениваются друг с другом мыслями, той или иной информацией. Мысль находит свое выражение именно в языке, без такого выражения мысли одного человека оказываются недоступными другому.

Главная цель логики состоит в том, чтобы найти правила и принципы обоснованных рассуждений. В доказательных рассуждениях мы опираемся на правила дедуктивных умозаключений, которые при истинных посылках гарантируют получение достоверно истинных заключений. В правдоподобных рассуждениях мы стремимся с помощью соответствующих аргументов (доводов) подтвердить и обосновать свои заключения. Оперируя понятиями и суждениями, мы абстрагируемся в логике от целого ряда условий и обстоятельств, поскольку нашей задачей является сохранение, передача и преобразование истины. По сути дела основная задача логики состоит в том, чтобы сформулировать правила преобразования информации, т.е. из имеющейся информации получить новую информацию. Именно для этой цели и предназначены рассуждения, или умозаключения, содержащие в своем составе различные посылки, состоящие из суждений, которые в свою очередь состоят из понятий.

Для выражения всех этих элементов рассуждения служат различные средства языка. Понятия выражаются посредством отдельных слов или словосочетаний, суждения и умозаключения - с помощью простых или сложных предложений. Поэтому логический анализ рассуждений тесно связан с анализом языка, хотя отнюдь не сводится к последнему. Действительно, при логическом анализе суждений мы интересуемся его логической структурой, а не грамматической формой. Поэтому выделяем в суждении те элементы, которые имеют существенное значение для его характеристики с точки зрения истинности и ложности. В строгом смысле слова только суждения могут рассматриваться как истинные или ложные, ибо именно они могут верно или неверно, адекватно или неадекватно относиться к действительности. Предложения же хотя и используются для выражения суждений, сами по себе не могут рассматриваться как истинные или ложные. Более того, существуют в нашем языке такие предложения, которые служат не для выражения суждений, а представляют собой вопросы, повеления и т.п. Подробнее о них речь пойдет в гл.3, здесь же нам хотелось бы обратить внимание на различие между логическим и грамматическим анализом.

Почему так важен логический анализ, какую роль он играет в повседневном и особенно научном познании?

1. Поскольку язык развивался как средство коммуникации и взаимопонимания между людьми, постольку он главным образом совершенствовался для быстрой передачи информации, увеличения объема передаваемых сообщений, иногда даже за счет неточности и неопределенности их смысла. Это особенно характерно для образного языка ораторской и художественной речи, которая изобилует сравнениями, метафорами, синонимами и омонимами и другими языковыми средствами, придающими ей особую окраску, эмоциональность, наглядность и выразительность. Но все это значительно затрудняет логический анализ языка, а иногда и затрудняет понимание речи.

2. Как универсальное средство для коммуникации и обмена мыслями и информацией, язык выполняет множество функций, которые не интересуют логику. Логика, напротив, стремится как можно точнее передать и преобразовать существующую информацию и тем самым устранить некоторые недостатки естественного языка путем создания искусственных формализованных языков. Такие искусственные языки используются прежде всего в научном познании, а в последние годы они нашли широкое распространение в программировании и алгоритмизации различных процессов с помощью компьютеров. Достоинство подобных языков состоит прежде всего в их точности, однозначности, а самое главное - в возможности представления обычного содержательного рассуждения посредством вычисления.

Формализация рассуждения состоит в представлении его посредством символов и формул искусственного (формализованного) языка, в котором перечисляются, во-первых, исходные формулы, выражающие основные утверждения содержательной теории, во-вторых, первоначальные понятия, которые фигурируют в этих утверждениях, и, в-третьих, явно указываются те правила вывода или преобразования, с помощью которых в содержательных теориях получают теоремы из аксиом, а в формальных теориях исходные формулы преобразуют в производные. Нетрудно заметить, что формализация рассуждения происходит в соответствии с требованиями аксиоматического метода, знакомого нам из школьного курса геометрии. Разница состоит только в том, что вместо понятий и суждений в ней используются символы и формулы, а логический вывод теорем из аксиом заменяется преобразованием исходных формул в производные. Таким образом, при полной формализации содержательное мышление (рассуждение) его отображается в формальном исчислении. Кроме формализованных языков логики и математики, к искусственным научным языкам относят также языки тех наук, в которых широко используются символы и формулы. Типичным является, например, язык химических символов и формул. Однако в таких языках символы и формулы служат для более компактной и краткой записи соответствующих понятий и утверждений. Так, в химии символы употребляются для записи химических элементов или простых веществ, а формулы - для записи их соединений и сложных веществ. Но само рассуждение проводится как обычно на содержательном уровне.

  • Читать дальше
  • 1
  • ...
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: