Вход/Регистрация
Магия чисел. Ментальные вычисления в уме и другие математические фокусы
вернуться

Шермер Майкл

Шрифт:

Теперь попробуйте решить легкую задачу другого типа.

Хотя вычисления, представленные выше, достаточно просты, существует еще более простой и быстрый способ умножения числа на 11. Это магия чисел во всей красе: вы не поверите своим глазам, когда увидите! (Если, конечно, вы еще не забыли, что читали в главе 0.)

Вот как это работает. Представьте себе двузначное число, цифры которого в сумме дают 9 или меньше. Для умножения такого числа на 11 просто сложите эти две цифры и вставьте полученную сумму между двух исходных цифр. Например, чтобы умножить 42 х 11, сначала складываем 4 + 2 = 6. Поместив 6 между 4 и 2, получаем 462, что и является решением!

Вычислите 54 х 11, используя данный метод.

Что может быть проще? Все, что вам нужно, — поставить 9 между 5 и 4 и получить окончательный ответ 594.

Но что делать, когда сумма двух чисел больше 9? В таких случаях надо увеличить цифру десятков на 1, а затем вставить последнюю цифру суммы между двумя числами, как и прежде. Например, при умножении 76 х 11 суммируете 7 + 6 = 13, увеличиваете цифру 7 в числе 76 до 8, а затем вставляете 3 между 8 и 6, что дает окончательный ответ 836.

Посмотрите на схему вычислений:

Попытайтесь самостоятельно умножить 68 х 11.

После того как вы освоите этот метод, вы никогда не станете умножать числа на 11 по-другому. Решите несколько задач, а затем сверьтесь с ответами в конце книги.

Следующую задачу вначале бывает очень трудно решить.

Попытайтесь умножить 89 х 72 в уме, подглядывая в случае необходимости в решение. Если вы справились с ней за две попытки, то все в порядке.

Если вы получили правильный ответ с первого или второго раза, похлопайте себя по плечу. В действительности не найдется задач на умножение типа «2 на 2» труднее этой.

Если вы не получили ответ сразу, не волнуйтесь. В следующих двух разделах я обучу вас более простым стратегиям для решения подобных задач. Но прежде чем продолжить чтение, попрактикуйтесь в методе сложения на следующих задачах на умножение.

Метод вычитания

Метод вычитания может пригодиться, когда одно из умножаемых чисел заканчивается на 8 или 9. Следующий пример показывает, что я имею в виду.

Хотя большинство людей находят, что сложение легче вычитания, порой удобнее отнять маленькое число, чем прибавить большое. (Если бы мы решали эту задачу методом сложения, то пришлось бы складывать 850 + 153 = 1003.)

Теперь рассмотрим сложную задачу, приведенную в конце предыдущего раздела.

Разве это не намного проще? А вот задача, где одно из чисел заканчивается на 8.

В данном случае следует поступить с числом 88 так: вычитаем 90 — 2, затем умножаем 90 х 23 = 2070. Но мы умножили с лишком. Каким? Он равен 2 х 23 = 46. Так что для получения ответа 2024 надо вычесть 46 из 2070.

Хочу подчеркнуть, что важно решать такие примеры в уме, а не просто изучать, как это делается. Пропускайте через себя эти задачи, проговаривайте выполняемые действия вслух, чтобы подкрепить свои размышления.

Я использую метод вычитания не только для чисел, оканчивающихся на 8 или 9, но и для чисел, близких и больших 90, поскольку 100 — очень удобное число для умножения. Например, если кто-то попросит меня умножить 96 на 73, я незамедлительно округлю 96 до 100.

Когда действие на вычитание внутри задачи на умножение требует держать числа в уме, использование дополнений (которые мы изучили в главе 1) ускорит получение ответа.

Вы поймете, о чем я говорю, когда поработаете над задачами, приведенными ниже. Например, вычтите из 340 число 78.

Нам известно, что ответ будет в области «200 плюс». Разность между 40 и 78 составляет 38. С помощью дополнения к 38, которое равно 62, получаем ответ 262!

Теперь следующая задача.

Есть два пути вычитания внутри данной задачи. Длинный путь состоит из вычитания 200 и прибавления 48.

Короткий путь заключается в понимании того, что ответ будет равен 6600 и «сколько-то еще». Для определения этого «сколько-то» вычитаем 52–40 = 12, а затем находим дополнение для 12, которое равно 88. Следовательно, ответ — 6688.

  • Читать дальше
  • 1
  • ...
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: