Коллектив авторов
Шрифт:
Рис. 17. Примеры недеформированных кластов в диамиктитах толщи мыса Лайеля. А и Б – обломок грубозернистого красноцветного кварцевого песчаника (А – общий вид, Б – внутреннее строение); В и Г – обломок онколитового известняка (В – общий вид, Г – внутреннее строение).
Дополнительно проведенное изучение внутреннего строения толщи мыса Лайеля показало, что в диамиктитах этой толщи (и на это ранее уже обращалось внимание (Bjоrnerud et al., 1991) класты претерпели зачастую весьма существенные деформации (рис. 18). Кроме того, в тех случаях, когда в породах толщи видна истинная слоистость, обусловленная чередованием пород разной гранулометрии (например, песчаников и конгломератов), отчетливо видно, как отмеченная выше «полосчатость», интерпретируемая как «сезонная слоистость», под разными углами пересекает границы породных разностей (рис. 19). Это означает лишь то, что эта «полосчатость» вторична по отношению к слоистости пород. Наиболее вероятно, что она представляет собой форму выражения сланцеватости, обусловленную относительным обогащением пород углеродистым веществом в результате «растворения» их под давлением (перпендикулярным полосчатости) и выносе из породы карбонатного материала. Все это позволяет сделать вывод о том, что породы толщи мыса Лайеля испытали существенные дислокации.
Рис. 18. Примеры деформированных кластов в диамиктитах толщи мыса Лайеля. А – зигзагообразно деформированные класты кварцитов; В – растянутые обломки перекристаллизованных известняков.
Рис. 19. Примеры несовпадения (А, Б и В) и совпадения (Г) пространственной ориентировки полосчатости («кливажа») и слоистости в породах толщи мыса Лайеля.
Этот вывод потребовал проведения дополнительного структурного изучения пород толщи мыса Лайеля. В результате этих исследований установлено, что в породах толщи проявлено несколько (не менее двух) разновозрастных систем «сланцеватости» (рис. 20). Ранняя сланцеватость (S1) выражена тонким чередованием карбонатистых и углеродистых полос (ламин), которое до этого было интерпретировано как «сезонная слоистость» в диамиктитах.
Рис. 20. Примеры характера соотношения раннего (желтый пунктир) и позднего (белый пунктир) кливажа в породах толщи мыса Лайеля.
В некоторых случаях пространственная ориентировка поверхностей кливажа и рассланцевания пород (S1) близко совпадает со слоистостью пород (S0). В других случаях кливажные плоскости S1 пересекают поверхность S0 под разными углами (см. рис. 19). Это может означать, что породы толщи мыса Лайеля смяты в разномасштабные изоклинальные складки (F1) и их пакеты. Были установлены многочисленные примеры того, как ранний кливаж S1 смят в изоклинальные (рис. 21,А, Б, В) и асимметричные (рис. 21, Г) складки F2 разного размера. При этом более поздняя сланцеватость (S2) играет роль «кливажа» осевой плоскости этих складок и пересекает полосчатость пород (S1) в замках складок F2.
Рис. 21. Примеры пересечения поверхностями позднего кливажа S2 (белый пунктир) замков изоклинальных (А, Б и В) и асимметричных (Г) складок (F2), в которые смята полосчатость S1 (ранний «кливаж») пород толщи мыса Лайеля.
В дополнение к этому отметим, что ранее проведенное изучение геометрических параметров удлиненных (растянутых) галек из конгломератов толщи мыса Лайеля (Bjоrnerud et al., 1991) и результаты статистической обработки массовых замеров длинных и коротких осей деформированных кластов показали, что направление преимущественного их удлинения ориентированно в направлении северо-запад – юго-восток. Учитывая это, а также то, что, как уже было отмечено выше, крылья синклинория мыса Лайеля осложнены многочисленными более мелкими асимметричными складками северо-восточной вергентности с преобладающим погружением шарниров в северо-западных румбах, можно заключить, что формирование структуры верхнедокембрийских комплексов этой части Шпицбергена произошло в условиях сжатия в направлении юго-запад – северо-восток, при северо-восточном направлении тектонического транспорта.
Таким образом, все эти наблюдения и основанные на них построения позволяют прийти к выводу о том, что толща мыса Лайеля представляет собой сложно дислоцированный комплекс пород. В нем отмечены несколько (не менее двух) разновозрастных мезоструктурных парагенезов, каждый из которых проявлен образованием каскадов разномасштабных изоклинальных складок, сопровождающихся кливажем осевой плоскости, деформаций – удлинением, расплющиванием и зигзагообразными деформациями обломков. Это заставляет, с одной стороны, отказаться от известных представлений, отраженных на геологической карте (м-ба 1:100 000) и описанных в объяснительной записке к ней (Dallmann et al., 1990), и показывающих простое строение толщи мыса Лайела и «синклинорное» строение основного ареала ее распространения (синклинория мыса Лайеля). С другой стороны, это позволяет заключить, что (1) оценки мощности (до 9 км) тиллоидной толщи мыса Лайеля в традиционном «синклинорном» понимании структуры чрезвычайно завышены; (2) в действительности «толща» мыса Лайеля представляет собой сложноустроенный пакет разномасштабных (в том числе и крупноамплитудных) изоклиналей, который дислоцирован в крупную негативную складку – синформу северо-западного простирания.
4.1.3. Общие замечания о структуре верхнедокем-брийских комплексов Земли Веделя Ярльсберга
Анализ геологических карт (Birkenmajer, 1990; Czerny et al., 1993; Dallmann et al., 1990; Ohta, Dallmann, 1996) и специальных публикаций (Bjornerud et al., 1991; Mazur et al., 2009; Smullikowski, 1968), а также собранной нами дополнительной структурно-геологической информации позволяет с уверенностью говорить о том, что мега– и мезоструктурный «узор», распознаваемый в верхнедокембрийских комплексах ЗВЯ как на севере (к югу от залива Белсунд), так и на юге (к северу от залива Хорсунд), характеризуется северо-западным и юго-восточным простиранием и северо-восточной вергентностью структурных форм (крупных антиклинориев, синклинориев, антиформ и синформ, а также осложняющих их крылья асимметричных складок северо-восточной вергентности; крупных разломных зон и оперяющих их структур). То есть простирание линейных элементов в структурных парагенезах верхнедокембрийских комплексов ЗВЯ ориентировано почти ортогонально к предполагаемому продолжению простирания фронта скандинавских каледонид. Говоря другими словами, простирание каледонского (Скандинавского) деформационного фронта (Caledonian (Scandian) deformation front) (Gee, 2005) и простирание складчатых и разрывных дислокаций верхнедокембрийских комплексов ЗВЯ почти ортогональны. Такая ориентировка наблюдаемого структурного плана верхнедокембрийских комплексов ЗВЯ не соответствует структурному плану, который бы следовало ожидать, исходя из простирания фронта скандинавских каледонид (рис. 22), если бы эти образования слагали каледонские покровы Шпицбергена (были бы каледонидами или фундаментом каледонид).
Рис. 22. Положение продолжения фронта Скандинавских каледонид в пределы Баренцева моря на палеотектонической реконструкции для этапа начала раскрытия Евразийского океанического бассейна (примерно 50 млн лет назад), из работы (Gee, 2005) с упрощениями и добавлениями автора. Добавлены жирные двусторонние стрелки, показывающие простирание складчато-разрывных дислокаций позднедокембрийских комплексов ЗВЯ, простирание складчато-разрывных дислокаций протоуралид-тиманид и простирание складчато-разрывных дислокаций скандинавских каледонид. 1 – континенты и островная суша; 2 – шельфы и эпиконтинентальные внутренние моря; 3 – океанические котловины и бассейны с корой океанического типа.