Шрифт:
Антитела играют важную роль в подавлении вирусных инфекций. Иммуноглобулины М и G разыскивают вирус в крови, в лимфе, в спинномозговой жидкости и связываются с ним. В результате образуются агрегаты из антител и вирусных частиц, в которых вирус оказывается обездвижен. Другие антитела могут действовать иначе. Например, они связываются с вирусной частицей в том месте, где вирус распознает подходящую для заражения клетку. Лишенный "органов чувств", вирус не может найти укрытия и обречен на гибель. Однако, связанные антителами, вирусы пока только нейтрализованы, но не уничтожены. Но и за этим дело не станет. Агрегаты вируса с антителами представляют собой отличную приманку для фагоцитов, которые налетают на них, как мухи на мед, заглатывают и уничтожают – и вирус, и антитела. Кроме того, такие комплексы – прекрасная находка и для комплемента (так называется группа из примерно двадцати белков крови). Белки комплемента не могут пройти равнодушно мимо скопления иммуноглобулинов. Им все равно, по какому поводу они скопились. Стоит только одному из этих двадцати заметить такое скопление, он тут же ввязывается в драку. Немедленно подбегают остальные, и в образующейся свалке у вируса нет никаких шансов уцелеть. Особенно любит комплемент уничтожать вирусы, покрытые липидной оболочкой: вирусы гриппа и клещевого энцефалита, желтой лихорадки и бешенства – его излюбленные мишени.
Структура молекулы иммуноглобулина G: 1 – легкие цепи; 2 – тяжелые цепи; 3 – антиген–связывающий центр
Очень своеобразно действуют иммуноглобулины А. Они, обязательно парой, подстерегают добычу, устроившись на поверхности слизистой – полости рта, кишечника, полового и респираторного трактов. Их находят в слюне, слезах и молозиве. Тот же вирус гриппа, попав на поверхность верхних дыхательных путей, будет схвачен и обезврежен этими антителами. Эти'стражи порядка просто не дадут ему проникнуть внутрь.
Когда вирус все же попадает внутрь клетки, он становится недоступным для антител. Но это происходит только в том случае, если он там сидит и не высовывается. Вечно он там сидеть, однако, не может. Размножившись внутри одной клетки, вирусные частицы вынуждены ее покинуть, чтобы проникнуть в соседние. Вот тут–то они и попадаются антителам. Но и находясь внутри клетки, вирус часто выставляет на клеточной поверхности вирусные белки. Антитела их, естественно, расценивают как нечто чужеродное и связываются с ними. Такой комплекс служит лакомой приманкой для фагоцитов, Т–киллеров и комплемента. Руководствуясь метками, оставленными антителами, это дружное семейство налетает на клетку, зараженную вирусом, и уничтожает ее. С одной стороны, уничтожается вирус" что, конечно, хорошо. Но вместе с ним уничтожается и клетка – а это уже плохо, нередко и очень плохо – если клетка та, к примеру, нервная.
Антитела сиосоокы ародилать сквозь плаценту, обеспечивая на первых порах иммунитет у новорожденных, пока у них не успела сформироваться собственная система защиты, Другие антитела попадают новорожденному с материнским молоком, обеззараживая пищеварительный тракт от возбудителей многих опасных заболеваний.
Надо заметить, что антитела обычно строго специфичны, то есть антитела, скажем, к вирусу полиомиелита не распознают, не замечают вирус герпеса, и наоборот. Известно также, что обычно у вирусов существует много разных вариантов, как говорят, серотипов. Например, у риновирусов известно более сотни серотипов, и антитела к одному из них не защищают против инфекции другим серотипом того же вируса. Наконец, даже наиболее просто устроенная вирусная частица вызывает образование не одного, а нескольких видов антител, отличающихся по специфичности. А ведь помимо антител к вирусам, иммунная система должна уметь делать антитела против разнообразнейших бактериальных антигенов. Складывается впечатление, что антигенов может быть бесконечное множество, все они разные, и возникает вопрос, каким образом иммунная система обеспечивает специфичное распознавание любого из них. Механизм этого процесса до конца не ясен, но то, что иммунная система действительно умеет это делать, не вызывает никакого сомнения: иммунный ответ непременно последует на любой вирус, на любой микроорганизм и вообще на любой антиген. При этом совершенно неважно, встречался ли раньше организм с этим вирусом. Иммунный ответ обязательно последует уже при первой встрече, а при повторной попытке ещё более усилится.
Как живете, как животик?
Ротовая полость настолько доступна для возбудителей самых разных инфекционных заболеваний, что традиционное приветствие доктора Айболита никогда не потеряет актуальности. Правда, возбудители с пищей попадают в желудок, а там их ждет серьезное испытание – кислотность желудочного сока выдерживают немногие.
Желудок, как известно, участвует в пищеварении, воздействуя на пищу желудочным соком, который выделяется клетками его слизистой оболочки. Желудочный сок содержит три фермента, а также соляную кислоту и слизь. Из этих трех ферментов наиболее важным является пепсин, который активизируется под влиянием соляной кислоты и начинает переваривать белки. Соляная кислота в желудочном соке содержится в количестве, достаточном для того, чтобы убить почти все живое, попадающее с пищей в желудок. Клетки, выстилающие желудок, соляной кислотой не повреждаются, потому что покрыты слизью. Кроме того, они очень быстро обновляются.
Вот так и выходит, что большинство вирусов, попадающих в желудок, просто–напросто погибает от действия соляной кислоты и переваривается, как обычная пища. Странно было бы, однако, ожидать, что вирусы не смогли приспособиться к этим суровым условиям и не выработали устойчивости к кислотным дождям, орошающим их в желудке. И действительно, многие вирусы научились преодолевать этот барьер.
Вот, к примеру, ротавирусы. Такое название они получили от латинского слова "rota", что означает "колесо". В самом деле, их частицы под электронным микроскопом выглядят как колеса с толстой втулкой, короткими спицами и тонким ободом. Так получается потому, что у этих вирусов две белковых оболочки – наружная ("обод"), и внутренняя ("втулка"), которые соединены между собой еще одним белком, образующим "спицы". Сердцевина у них тоже устроена своеобразно. Она содержит, как и положено, генетический материал вируса – в виде 11 фрагментов РНК, каждый из которых представляет собой отдельный ген. Такой расчлененный геном уже встречался у вирусов гриппа, но, в отличие от гриппа, РНК ротавирусов состоит из двух нитей, закрученных одна на другую.
Схема строения ротавирусов: 1 – наружная белковая оболочка; 2 – внутренняя белковая оболочка; 3 – молекулы РНК в сердцевине вириона
Возбудитель проникает в организм через рот. Успешно преодолев кислую среду желудка, вирус накапливается в двенадцатиперстной кишке, и, наконец, заселяет тонкий кишечник. Тонкий кишечник предназначен для всасывания переваренной пищи, поэтому поверхность выстилающих его клеток, обращенная в просвет кишечника, ворсинчата. Ворсинки, представляющие собой клеточные выросты,* создают огромную всасывающую поверхность.
Именно эти клетки и являются мишенью для ротавирусов. В результате вирусной инфекции они погибают. Правда, на их месте тут же появляются новые, но они ёще не успели отрастить ворсинки и поэтому не справляются со всасыванием переваренных питательных веществ, особенно сахаров. Стремясь исправить положение, они накачивают в просвет кишечника избыточное количество воды. Начинается понос, именуемый в медицине диареей, и обезвоживание организма. Сделав свое дело, возбудитель выделяется с испражнениями: в 1 грамме кала может содержаться до десяти миллиардов вирусных частиц.