Вход/Регистрация
Пока алгебра не разлучит нас. Теория групп и ее применение
вернуться

Фресан Хавьер

Шрифт:

Вычислим в качестве примера прямое произведение циклической группы второго порядка на саму себя. Как известно, элементы ℤ/2 равны [0] и [1], а операции над ними выполняются по следующим правилам:

[0] + [0] = [0], [0] + [1] = [1],[1] + [0] = [1] и [1] + [1] = [0].

Так, прямое произведение ℤ/2 х ℤ/2 будет образовано следующими парами:

([0], [0]), ([0], [1]), ([1], [0]) и ([1], [1]).

Первая из этих пар — нейтральный элемент. Обозначим ее через е. Если мы обозначим остальные пары через а = ([0], [1]), b = ([1], [0]) и с = ([1], [1]), то таблица группы примет вид

70

Это группа Клейна, названная в честь немецкого математика Феликса Клейна (1849—1925), который впервые описал ее в 1884 году в своих «Лекциях об икосаэдре и решении уравнений пятой степени» при изучении преобразований плоскости, оставляющих ромб инвариантным. Обратите внимание, что она содержит всего четыре элемента, а группа треугольника — шесть. Это логично, поскольку группы в некотором смысле характеризуют симметрию, а ромб менее симметричен, чем треугольник!

Гэуппа преобразований, оставляющих ромб неизменным.

Порядок всех элементов группы Клейна равен двум, поэтому на диагонали таблицы умножения записаны только нейтральные элементы. Между прочим, можно доказать, что единственные группы четвертого порядка — это циклическая группа ℤ/4 и группа Клейна.

Они отличаются между собой тем, что одна из них содержит элементы четвертого порядка, другая — нет.

ЛЕВИ-СТРОСС: Я понимаю, о чем вы говорите, господин Вейль, но складывается впечатление, что мы отошли от темы: какое отношение все это имеет к браку?

71

ВЕЙЛЬ: Наберитесь терпения! Я уже говорил, что в обществе, которое удовлетворяет двум нашим условиям, описание структуры родства сводится к описанию разновидностей брака Mi и функций f и g. Введем третье условие, которое описывает запреты инцеста и, по всей видимости, выполняется в некоторых племенах, о которых вы писали в «Элементарных структурах родства»:

Условие 3: Допускается брак между любым мужчиной и дочерью брата его матери.

Это условие означает коммутативность композиции f и g. Следовательно, чтобы изучить все возможные модели обществ, которые удовлетворяют нашим трем условиям, нам нужно как-то классифицировать абелевы подгруппы симметрической группы, порожденные двумя элементами. Посмотрим, как выглядят эти подгруппы:

Обозначим через Н группу, порожденную f и g. Первый возможный случай таков: один из двух элементов можно получить, возведя другой в определенную степень. В этом случае включать такой элемент в число порождающих элементов группы Н не требуется: его можно получить из другого элемента. Таким образом, имеем подгруппу, порожденную единственным элементом, то есть циклическую группу.

Предположим, что это не так, то есть f и g не зависят друг от друга. По определению, элементами Н будут все возможные цепочки операций над f и g, к примеру:

f * g * g * f * g

Порядок следования элементов будет произвольным, но так как мы предположили, что композиция f и g коммутативна, мы можем воспользоваться свойством ассоциативности, применить равенство f*g = g*f и попарно объединить элементы так, что все f и все g будут расположены рядом. Пример:

f*g*g*f*g=f*g*(g*f)*g=f*g*(f*g)*g=f*(g*f)*g*g=f*(f*g)*g*g=f2*g3

Так как этот метод корректен для любого элемента H, мы доказали, что любой элемент Н можно записать в виде fn * gm, где n и m — неотрицательные целые натуральные числа (они могут равняться нулю). Как правило, из соображений удобства указывают, что и fn, и gm — нейтральные элементы. Таким образом, когда верхний индекс одного члена обнуляется, результат операции равен степени другого члена.

Вместо fn * gm мы могли бы записать (fn, gm), при этом в структуре Н не произошло бы каких-то существенных изменений. Эта операция очень похожа на произведение двух циклических групп, однако члены fn * gm могут повторяться, даже если

72

порядок f и g будет больше, чем n и m соответственно. Чтобы показать, что Н — это произведение двух циклических групп [6] , нужно выполнить еще несколько действий:

6

1 Заинтересованный читатель найдет полное доказательство в приложении. Чтобы вы могли полностью понять доказательство, рекомендуем сначала прочесть первую часть следующей главы.

Предложение 1. Конечная абелева группа, порожденная двумя элементами, является либо циклической, либо прямым произведением двух циклических групп.

Это предложение — частный случай теоремы о структуре конечнопорожденных абелевых групп, по которой такие группы изоморфны прямому произведению

ℤ × ... × ℤ × ℤ/n1 × ... × ℤ/nk

где ℤ — группа целых чисел, a ℤ/n1 ..., ℤ/nk — циклические группы. Число копий ℤ, приведенных в произведении, называется рангом группы и отлично от нуля тогда и только тогда, когда группа является бесконечной.

  • Читать дальше
  • 1
  • ...
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: