Шрифт:
Дерево возможных отображений множества A = {a, b} на множество B = {1, 2, 3, 4}.
Если даны два отображения — отображение f множества А на множество В и отображение g множества В на множество С, то имеет смысл говорить о композиции отображений f и g множества А на множество С, то есть о присвоении каждому элементу а множества А элемента g (f(а)) множества С. Композиции отображений g и f обозначается как g о f. Ее можно представить в виде графов следующего вида.
Граф композиции отображений q и f.
Нечеткие множества и графы
В последние десятилетия в целях моделирования сложных ситуаций реальной жизни все шире применяется теория нечетких множеств, созданная инженером Калифорнийского университета в Беркли Лотфи Заде. В классической трактовке элемент а либо принадлежит множеству А, либо нет. Следовательно, множество определяется характеристической функцией: она принимает значение 1 для элементов, принадлежащих A, и 0 для элементов, не принадлежащих A.
Идея Заде состояла в том, чтобы расширить характеристические функции и создать нечеткие множества, то есть определить функции, которые ставят в соответствие элементам x универсального множества X значения f(х) в интервале от 0 до 1. В такой трактовке f(х) определяет степень принадлежности х к А.
Нечеткие множества, соответствующие утверждению «результат примерно равен 1».
* * *
ЖУРНАЛЫ О ДИСКРЕТНОЙ МАТЕМАТИКЕ, КОМБИНАТОРИКЕ И ГРАФАХ
Ниже перечислены ведущие современные журналы по этим темам.
· Ars Combinatorica.
· European Journal of Combinatorics.
· Combinatorica.
· Geombinatorics.
· Combinatorics, Probability and Computing.
· Journal of Algebraic Combinatorics.
· Designs, Codes and Cryptology.
· Journal of Combinatorial Theory. Series A.
· Discrete and Computational Geometry.
· Journal of Combinatorial Theory. Series B.
· Discrete Applied Mathematics.
· Journal of Geometry.
· Discrete Mathematics.
· Journal of Graph Theory.
· Electronic Journal of Combinatorics.
* * *
Одному и тому же расплывчатому понятию можно сопоставить разные нечеткие множества. Именно это и вызывает интерес к теории нечетких множеств — она допускает альтернативные трактовки одной и той же ситуации. Задачи искусственного интеллекта, управления механизмами, обработки цифровых фотографий, распознавания образов и другие задачи (даже стиральные машины с нечеткой логикой) — прекрасные наглядные примеры того, как эта теория используется на практике. Введение степеней — очень важная идея, ведь между черным и белым существует множество оттенков серого.
В рамках теории нечетких множеств также рассматриваются нечеткие классификации и упорядоченность; можно говорить о степенях отношений. Эта теория основана на теории множеств и может быть подтверждена примерами из теории вероятностей (вероятность является оценкой какого-либо события и лежит в интервале от 0 до 1), но особенно интересна в эмпирических моделях и при решении задач, на которые нельзя дать четкого и однозначного ответа в рамках классической математики.
В частности, в теории нечетких множеств тоже используются графы отношений, но в этом случае значения от 0 до 1, присваиваемые парам элементов, сопоставляются ребрам графов. Иными словами, получается взвешенный граф.
Мы надеемся, что в этом разделе нам удалось показать, что теория графов также может быть сформулирована в терминах теории множеств и что графы играют важную роль даже при построении графиков.
Словарь
Алгоритм — пошаговая последовательность действий по решению задачи.
Вершина — точка графа, где сходится одно или более ребер; также может быть изолированной.
Вес — значение, поставленное в соответствие ребру графа, означающее стоимость, расстояние, время и пр.
Взвешенный граф — граф, каждому ребру которого поставлено в соответствие некоторое число.
Гамильтонов граф — граф, в котором существует гамильтонов цикл.
Гамильтонов цикл — цикл, содержащий все вершины графа ровно по одному разу.
Гомеоморфные графы — графы, один из которых получается из другого путем добавления или удаления вершин степени 2. Если в таких графах удалить все вершины степени 2, полученные графы будут одинаковыми.