Шрифт:
Мы уже знаем, что французские математики восхищались работой Ковалевской. Она имела и других поклонников своего таланта, к каковым относился Г. Г. Ап- пельрот, посвятивший задаче о вращении всю свою долгую жизнь. Он говорил, что в работах Ковалевской о вращении твердого тела виден блеск таланта.
Профессор В. В. Голубев 6 по поводу математической идеи, которой руководствовалась Ковалевская, писал:
... чтобы понять эту идею, надо взглянуть на нее с точки зрения тех научных интересов, которые были в школе Вейерштрасса и которые полностью разделяла Софья Васильевна.
Два обстоятельства бросаются в глаза при чтении работы о движении твердого тела, если сопоставить ее с позднейшими комментариями, дополнениями и пояснениями.
1. С. В. Ковалевская в своей работе нигде не высказывает особого восторга по поводу найденного ею в рассмотренном ею случае нового алгебраического интеграла. Она пользуется им как удобным дополнительным обстоятельством, позволившим значительно упростить решение,— и это все...
2. С. В. Ковалевская нигде не ищет случаев с однозначными интегралами, она ищет случаи с мероморфными интегралами. А. А. Марков с присущим ему стремлением критиковать во что бы то ни стало усмотрел в таком ограничении повод для существенной критики работы. Между тем, по моему мнению, именно это ограничение и открывает основную идею работы.
Дело мне представляется следующим образом.
В 1876 г. Вейерштрасс напечатал свои исследования (здесь [199].—Я. К.) по изображению целых и мероморфных функций; эти исследования настолько привлекли внимание ученых, что в 1879 г. Пикар перевел эти исследования на французский язык (здесь [200].—Я. К.).
Очевидно, всякая задача (механическая пли иная), которая приводила бы к уравнениям, интегрируемым в целых функциях времени, могла считаться разрешенною до конца, так как тейлоровское разложение интеграла давало бы его значение для любого
6 Ознакомившись с перепиской С. В. Ковалевской, В. В. Голубев поместил некоторые из ее писем в своей книге [165].
191
момента. Но по теореме Вейерштрасса мероморфные функции представляют отношение целых; следовательно, с некоторыми дополнительными осложнениями то же заключение приложимо и к уравнениям, имеющим мероморфные интегралы. Их также можно было считать до конца решенными при помощи разложений в ряды тех целых функций, отношения которых представляют искомые мероморфные интегралы. При этом совершенно не важно, выражаются ли эти целые функции через изученные или нет.
Но эту идею можно было применить только к функциям меро- морфным; в случае, еслн интегралы имеют подвижные существенно особые точки, их, очевидно, нельзя свести к отношению целых функций; С. В. Ковалевская ими не занималась.
Итак, С. В. Ковалевская искала те случаи, когда уравнения движения могут быть сведены к задаче о нахождении из уравнений целых функций; для этого, вообще говоря, теория последнего множителя не нужна. Наличие его позволило С. В. Ковалевской упростить дальнейшие вычисления и свести дело к известным функциям, по, говоря теоретически, можно было бы обойтись и без него. В своих лекциях по движению твердого тела (гл. II и гл. VI) я пытался развить эти идеи подробнее»...7
В конце письма В. В. Голубев говорит, что рассматривает работу С. В. Ковалевской как «замечательное приложение общих идей аналитической теории дифференциальных уравнений к задачам механики».
Исследования С. В. Ковалевской внесли ряд новых блестящих страниц в историю задачи о вращении твердого тела. Во-первых, С. В. Ковалевской был открыт новый случай интегрируемости, для которого она нашла четвертый интеграл (в дополнение к трем1 известным) и дала общее решение. Во-вторых, в связи с полученными С. В. Ковалевской результатами оказались поставленными две математические задачи: о существовании однозначных решений задачи о вращении тяжелого твердого тела вокруг неподвижной точки и задача о существовании четвертого алгебраического интеграла. В-третьих, работа С. В. Ковалевской дала толчок к огромному ряду исследований, относящихся к отысканию частных решений общей задачи, а также к ряду исследований частных решений случая Ковалевской.
Вопрос об однозначных решениях при произвольных пачальпых данных был, как мы указали, полностью решен А. М. Ляпуновым.
Усилиями многих ученых была доказана теорема: если эллипсоид инерции есть эллипсоид вращения, то четвертый
7 Это письмо В. В. Голубев направил мне 15 декабря 1953 г.
192
алгебраический интеграл существует только в случаях Эй- лера, Лагранжа и Ковалевской. Таким образом, четвертый алгебраический интеграл задачи о вращении тяжелого твердого тела, имеющего неподвижную точку, существует в тех и только тех случаях, в которых имеются однозначные на всей плоскости t общие решения для р, g, г, Ъ К'. Г-
Возник вопрос, является ли это обстоятельство случаи- ным совпадением или же в его основе лежат какие-то глубокие причины. В. В. Козлов показал [201], пользуясь методом малого параметра: именно существование бесконечного числа неоднозначных решений препятствует появлению нового однозначного аналитического интеграла в общем случае.
Ряд ученых упрощали и шлифовали доказательства указанных теорем, которые можно назвать «теоремами несуществования», и теперь эта область может считаться закрытой.