Шрифт:
И тут меня вдруг охватила досада. Как же так получается? Значит, раньше, чем я вошел в эту лабораторию, экспериментатор уже знал, сколько времени я буду искать нужную кнопку и сколько раз ошибусь? Ну, а если я захочу нажимать быстрее? Нет, быстрее, пожалуй, не выйдет - я старался изо всех сил. А если медленнее? Я ведь могу нарочно искать кнопку подольше. Как же тогда ваши формулы?
А ученый объясняет присутствующим (меня он даже не замечает - я ведь теперь «испытуемый», то есть попросту подопытный кролик).
– Расчет здесь довольно прост. Скорость реакции зависит от количества информации, получаемой во время опыта. В нашем опыте лампочки Зажигались в совершенно случайном порядке: в любой момент времени вероятность того, что вспыхнет красная лам-! почка, равна вероятности синей или зеленой. Среди тысячи вспышек каждая лампочка зажглась около сотни раз. Чем больше на панели разноцветных лампочек, тем больше неопределенность опыта. Потому и выходит, что в случае N лампочек длительность реакции зависит от величины log N.
Между прочим, психологи еще в прошлом веке открыли эту закономерность. Но они тогда, конечно, не знали, что дело тут связано с информацией. А формула Шеннона убедила нас, что все обстоит именно так. Сейчас мы несколько усложним наш опыт.
Экспериментатор нажимает кнопку, и снова у меня перед глазами мелькает разноцветная карусель. Сначала мне показалось, что все идет, как и прежде. Оказывается, нет: теперь у каждой лампочки своя «повадка». Красная зажигается чаще всех, и к ней я приспособился быстро. А голубая оказалась капризной: зажигается редко и всегда в неподходящий момент. Рука по привычке тянется к клавише, предназначенной для красного цвета, а тут вдруг перед глазами вспыхнула голубая - пока найдешь нужную клавишу, время уходит зря.
– Условия опыта стали другими, - говорит мой знакомый.
– Теперь каждой из лампочек задана различная вероятность. Неопределенность опыта стала меньше. Сейчас вы убедитесь, что уменьшилось и время реакции. Потом я покажу вам, что, подставив вероятность каждого цвета в формулу Шеннона, мы можем рассчитать это время.
Все слушают объяснения, а я сижу и нажимаю на кнопки. И снова проснулась во мне досада. Ведь я же не кролик в конце-то концов! Почему он так уверен, что я буду делать по формуле? Как хочу, так и делаю - пусть попробует что-нибудь доказать. И я стал «тянуть время». Как в футболе. Имеет команда один гол в запасе, до конца матча остались считанные минуты, вот они и «тянут»: давно бы можно было передать мяч центральному нападающему, а его вместо этого выкидывают за боковую черту, да так, чтобы улетел подальше, куда-нибудь на четвертый ярус трибун. А если доведется игроку этой команды вводить мяч в игру, он превращается в истинного артиста: уж как он «торопится», как старается сделать все «поскорее»! Но болельщик-то всегда видит, кто торопится по-настоящему, а кто делает вид.
И вот я решил поступить точно так же. Давно уж я отыскал глазами нужную клавишу, а делаю вид, что никак не могу найти. «Попробуйте, - думаю, - определите теперь время по своим формулам, узнаете, какой я вам кролик!» Легкий щелчок, погасла красная лампочка, часы зафиксировали время реакции: 7 минут 55 секунд. Ученый посмотрел на часы, еще раз взглянул на свои записи, подошел ко мне и громко сказал:
– Одно из двух: или вас очень утомил этот опыт, или вы намеренно удлиняли время реакции.
В эту минуту я почувствовал себя довольно-таки глупо. Может быть, потому я и задал довольно нелепый вопрос:
– А разве было заметно?
Кое-кто из присутствовавших чуть не подавился, потому что громко смеяться было неловко. Не смеялись только ученый и я.
– Я не следил за вашим поведением, - строго сказал ученый.
– Но я верю расчетам. Реакция должна была длиться около 7 минут.
– Так ведь и на часах почти столько же!
– попытался кто-то выступить в мою защиту.
– Нет, - твердо ответил он.
– 50 секунд разницы - это слишком большое время. Наш расчет позволяет определять время гораздо точнее. Если хотите в этом убедиться, я могу повторить опыт. Только на этот раз прошу без обмана!
Нет уж, теперь мне не до обмана! На этот раз я стараюсь изо всех сил. Кончился опыт, и часы показали 7 минут 3 секунды. Расчет предусмотрел мою расторопность с точностью нескольких секунд! Очевидно, формула учла все: и «характер» красной лампочки и «капризы» лампочки голубой.
– Как видите, - обращается к нам ученый, - время реакции во втором опыте оказалось меньше, чем в первом, хотя в обоих случаях лампочки переключались ровно 1000 раз. Почему это произошло? Потому что в этом случае испытуемый получил меньшее количество информации: ведь неопределенность опыта уменьшилась, потому что вероятность зажигания красной лампочки составляла в данном опыте 60 процентов, а голубой - только 3.
(Следует заметить, что при расчете по формуле Шеннона в теории информации всегда имеется в виду дополнительное