Шрифт:
Примерно в эти же годы крупный советский геолог академик С. С. Смирнов вместе со своими учениками развернул на территории нашей страны широкие поиски вольфрамовых месторождений. Не одну тысячу километров в холод и зной пришлось преодолеть геологам. Пешком, на собаках, на оленях исколесили они вдоль и поперек многие районы страны. И там, где проходили мужественные разведчики недр - в Забайкалье, Якутии, на Охотском побережье, возникали новые рудники, строились новые заводы - создавалась советская вольфрамовая промышленность.
В наше время примерно 80% всего добываемого в мире вольфрама потребляет металлургия качественных сталей, около 15% идет на производство твердых сплавов, остальные 5% промышленность использует в виде чистого вольфрама - металла, обладающего удивительными свойствами.
Чтобы расплавить вольфрам, его нужно нагреть до такой температуры, при которой большинство металлов уже испаряется - почти до 3400°С. Сам же вольфрам мог бы оставаться в жидком состоянии даже вблизи самого Солнца: температура кипения его свыше 5500°С. Тугоплавкость этого элемента и обеспечила ему применение в одной из важнейших отраслей промышленности - электротехнике
С тех пор как в 1906 году вольфрамовая нить вытеснила применявшиеся ранее для изготовления электрических ламп угольные, осмиевые и танталовые нити, каждый вечер в наших домах вспыхивают крохотные вольфрамовые молнии. Ежегодно в мире производят несколько миллиардов электроламп. Миллиарды огней!.. А много ли это? Судите сами: с начала нашего летоисчисления человечество прожило лишь немногим более миллиарда минут (29 апреля 1902 года в 10 часов 40 минут время начало отсчитывать второй миллиард минут новой эры).
Ученые и инженеры постоянно совершенствуют электрическую лампу, стремясь к тому, чтобы ее «жизнь» продолжалась как можно дольше. Подобно тому как тает горящая восковая свеча, при включении лампы вольфрам начинает испаряться с поверхности нити накаливания. Чтобы уменьшить испарение и тем самым продлить срок службы лампы, в нее под давлением обычно вводят различные инертные газы. А недавно предложено использовать для этой цели пары иода, который, как выяснилось, играет любопытную роль: он «ловит» испарившиеся молекулы вольфрама, вступает с ним в химическую связь, а затем оседает на нити, возвращая ей тем самым «беглецов», - лампа становится намного долговечнее.
Ассортимент электрических ламп, выпускаемых промышленностью, весьма разнообразен: от миниатюрных «бусинок», используемых в медицине, до мощных прожекторных «солнц».
На Всемирной выставке в Монреале в павильоне СССР демонстрировалась установка радиационного нагрева «Уран-1», одним из главных элементов которой служит лампа оригинальной конструкции, снабженная водяным и воздушным охлаждением. В сравнительно небольшой колбе из жаростойкого кварца, наполненной инертным газом ксеноном, находятся два вольфрамовых электрода. При включении лампы между электродами вспыхивает газовая плазма, раскаленная до 8000°С. Специальный зеркальный отражатель, по сравнению с которым обычные зеркала кажутся тусклыми жестянками, направляет инфракрасные лучи искусственного «солнца» (лампа воссоздает солнечный спектр) в оптическую систему установки, где они фокусируются в единый поток диаметром чуть больше сантиметра. Температура в фокусе пучка лучей достигает 3000°С. В этом горячем режиме «Уран-1» может непрерывно работать сотни часов.
Широкое применение в технике находят так называемые катодные лучи, которые представляют собой поток электронов, вырывающихся с поверхности металлического катода в вакуум («электронная эмиссия»). Как показала практика, одним из лучших материалов для катодов оказался вольфрам.
Вольфрам не только самый тугоплавкий металл. В чистом виде он обладает и колоссальной прочностью: его сопротивление разрыву достигает 40 тонн на квадратный сантиметр, значительно превышая прочность лучшей стали. И такие характеристики металл «ухитряется» сохранять даже при 800°С!
Высокая прочность металлического вольфрама сочетается с хорошей пластичностью: из него можно вытянуть тончайшую проволоку, 100 километров которой весят всего 250 граммов!
Вольфрамовая проволока, широко применяющаяся в электролампах, обрела недавно еще одну «профессию»: ее предложено использовать в качестве режущего инструмента для обработки хрупких материалов. Ультразвуковой генератор при помощи преобразователя придает вольфрамовой нити колебательные движения, и она медленно, но верно врезается в обрабатываемый материал. Новый «резак» легко справляется с такими материалами, как кварц, рубин, ситалл, стекло, керамика, разрезая их с ювелирной точностью на части или оставляя в них пазы и щели любой формы, любых размеров.
Но как ни велика прочность вольфрамовой проволоки, она не идет ни в какое сравнение с прочностью «усов» из этого металла - тончайших кристалликов, которые в сотни раз тоньше человеческого волоса. Советские физики сумели получить вольфрамовые «усы» диаметром всего две миллионные доли сантиметра. Их прочность 230 тонн на квадратный сантиметр - это почти равно абсолютному потолку прочности, т. е. теоретическому пределу, предсказанному наукой для земных веществ. Но такой чудо-металл существует пока только в стенах лабораторий.