Шрифт:
Первым делом необходимо определить отдачу от анализа как такового, независимо от любых платформы или инструмента. А после этого можно приступать к определению эффективности различных вариантов проведения анализа с учетом их скорости, продуктивности и затрат. Однако организации часто попадают в ловушку, когда доверяются продавцу, который превозносит огромную доходность инвестиций, обеспечиваемую его аналитическими продуктами. При этом продавец нередко объединяет доходность инвестиций, предлагаемую собственно аналитикой, с дополнительной ценностью, которую обеспечивают его технологии или инструменты. Вот почему необходимо отделять ценность инструментов от ценности базового анализа.
В качестве ремарки: если каждый продавец для каждого варианта, который вы рассматриваете, объединяет ценность анализа с ценностью инструмента, то, по крайней мере, это дает возможность для беспристрастного сравнения вариантов. Поскольку все расчеты будут включать в себя одинаковую изначальную ценность, то возникающая разница будет отражать разницу в дополнительной ценности, создаваемой инструментом или технологией.
Обратите внимание на структуру бизнес-кейса
Ричард Винтер из фирмы WinterCorp опубликовал потрясающую статью «Большие данные: сколько они стоят на самом деле?» {35} . В ней он описывает структуру, в рамках которой можно будет принять во внимание все типы затрат и использовать показатель, названный Винтером “total cost of data” (TCOD) – «суммарная стоимость данных», при инвестировании в аппаратное и программное обеспечение для поддержки аналитики. TCOD отражает общую стоимость широкого разнообразия необходимых компонентов, их мы рассмотрим далее в этой главе.
35
Richard Winter, “Big Data: What Does It Really Cost?”, WinterCorp (август 2013 г.). См.: http://www.wintercorp.com/tcod-report
Обратите внимание на то, что модель TCOD Винтера, а также большая часть этого раздела сосредоточены главным образом на одной стороне баланса, а именно на затратах. Я поступил так преднамеренно, поскольку компоненты затрат в разных организациях довольно схожи, тогда как получаемые за счет их преимущества могут значительно варьироваться в зависимости от конкретных аналитических процессов. Кроме того, когда речь идет об аналитике, точная оценка затрат часто упускается из виду. Вот почему я предлагаю сосредоточиться на этой стороне вопроса.
Большое преимущество модели TCOD Винтера состоит в том, что она не склоняется в пользу того или иного конкретного решения, а просто предлагает способ, который позволяет оценить и принять в расчет различные компоненты стоимости. Например, в статье описываются две различные ситуации, когда использование этой модели привело к двум совершенно противоположным выводам. В первом случае на основе свойств, требуемых для данных и обработки, был сделан вывод о том, что создание массивного параллельного окружения обойдется в три-четыре раза дороже, чем использование Hadoop. В другом случае с учетом свойств, требуемых для данных и обработки, был сделан вывод о том, что инвестиции в Hadoop обойдутся в три-четыре раза дороже, чем создание необходимого окружения.
Использование этой модели, нейтральной по отношению к оценке инструментов и технологий, позволяет объективно учесть все затраты. Применительно к операционной аналитике модель TCOD требует некоторой модификации, поскольку предусматривает слегка иной характер инвестирования. Однако, как мы увидим в следующем разделе, сочетание модели TCOD с дополнительными метриками, привязанными конкретно к операционной аналитике, создает великолепную стартовую позицию.
Каковы совокупные расходы на операционную аналитику?
При рассмотрении вариантов инвестирования в аналитику очень важно точно оценить совокупные расходы. Например, рассматривая инструменты с открытым исходным кодом, организации не должны слишком радоваться, получив бесплатную лицензию на программное обеспечение. Необходимо представить полную картину затрат с течением времени. Да, инструменты с открытым исходным кодом могут оказаться полезнейшим дополнением к аналитической среде. Однако при этом необходимо учесть все совокупные расходы и с осторожностью воспринимать ложные стимулы, чтобы по своему недосмотру не попасть со временем на повышенные издержки.
Итак, что следует учесть, оценивая затраты, связанные с внедрением операционной аналитики? Вам придется потратиться на следующее (а возможно, и не ограничиться этим) {36} :
• оборудование для поддержки аналитической обработки;
• программное обеспечение (обратите внимание, что даже в случае с открытым исходным кодом возникнут затраты, связанные с установкой и настройкой ПО);
• пространство для размещения оборудования и потребляемую электроэнергию;
36
На основе статьи в моем блоге для Международного института аналитики под названием «Во что действительно обходится укрощение больших данных» (“What Does Taming Big Data Really Cost?o), 12 сентября 2013 г. См.: http://iianalytics.com/2013/09/what-does-taming-big-data-really-cost/