Шрифт:
Мы знаем, что напряжение на участках цепи зависит от их сопротивления. С лампочкой Л1 мы ничего не делали, и сопротивление ее возрасти не могло, а поэтому остается сделать лишь один вывод: при подключении Л3 сопротивление правого участка цепи (участок бв) уменьшилось, что и привело к перераспределению напряжений, так же как это было бы в любом другом делителе.
Уменьшение сопротивления правого участка вполне объяснимо: включить две лампочки параллельно равносильно тому, что взять одну лампочку с более толстой нитью. Для расчета общего сопротивления двух параллельно включенных лампочек (или других элементов цепи) существует простая формула (листы 29, 30)
Ток на правом участке цепи разветвится — часть его пойдет через Л2, а часть через Л3. Если лампочки эти разные, ток большей силы пойдет через ту, которая имеет меньшее сопротивление. Если же сопротивления равны, то через лампочки Л2 и Л3 пойдет одинаковый ток. Однако при любом соотношении сопротивлений (а следовательно, и токов) на параллельно соединенных элементах цепи всегда действует одинаковое напряжение. Да иначе и быть не может! Ведь для общего тока, то есть для тока, который и определяет падение напряжения на том или ином участке цепи, важно общее сопротивление этого участка, независимо от того, какие в него входят потребители энергии и как они между собой соединены.
Сопротивление, подключаемое параллельно какому-нибудь участку цепи, называют шунтом, а сам процесс подключения параллельно сопротивления — шунтированием (листы 32, 34).
Так, например, можно сказать, что лампочкой Л3 мы зашунтировали лампочку Л2. Слово «шунт» в переводе означает «ответвление», «обходной путь».
Рассмотренные процессы позволят нам объяснить еще одно очень интересное явление. Попробуйте подключить к батарейке две, затем три и, наконец, четыре лампочки, соединенные параллельно. Вы сразу же заметите, что чем больше лампочек, тем слабее светится каждая из них. Все это может показаться совершенно необъяснимым. Ведь на всех лампочках действует одинаковое напряжение, равное э.д.с. батарейки, и казалось бы, что ток, проходящий через каждую из них, должен быть одинаковым — величина тока определяется по закону Ома независимо от числа подключенных лампочек. Однако в действительности это не так. Напряжение на лампочках не равно величине э.д.с. Чем больше лампочек мы подключаем к батарейке, то есть чем больше общий ток, потребляемый от нее, тем меньшее напряжение действует между выходными зажимами.
До сих пор мы рассматривали источник тока как некое идеальное устройство, забыв о том, что и в самом источнике теряется некоторая часть вырабатываемой им электрической энергии. В батарейке, например, часть энергии теряется в электролите и при движении зарядов по электродам. В машинном генераторе заметные потери возникают в проводах его обмоток.
Одним словом, для того чтобы реально изобразить источник тока, нужно добавить в его схему сопротивление, которое будет отражать все виды потерь внутри этого источника. Элемент цепи, о котором достаточно знать лишь то, что он обладает сопротивлением, на схеме обозначают в виде прямоугольника, возле которого обычно стоит буква R (лист 18). Такой элемент — внутреннее сопротивление источника Rвн— мы введем и в нашу схему, разместив его, разумеется, в самой батарее, то есть до ее выходных зажимов (лист 35).
Теперь видно, что вся электродвижущая сила распределяется между внешней цепью и внутренним сопротивлением источника. Увеличивая число лампочек, подключаемых к батарейке, мы тем самым увеличиваем потребляемый от нее ток.
А чем больший ток проходит по Rвн, тем больше напряжение теряемое на нем, и тем, следовательно, меньше напряжение Uб на зажимах батарейки. К такому же выводу можно прийти, если рассматривать нашу цепь как своеобразный делитель напряжения, в который входит внутреннее сопротивление Rвн и внешняя цепь. Чем больше лампочек мы подключаем к батарейке, тем меньше их общее сопротивление и тем меньшая часть э.д.с. приложена к внешней цепи.
Если говорить строго, то к внутреннему сопротивлению источника нужно было бы отнести и сопротивление соединительных проводов, так как и на них теряется часть напряжения. В нашем примере это не имеет особого значения, но в ряде случаев потери в проводах проявляются очень сильно. Посмотрите, как вечером в так называемые «часы пик» несколько слабеет свет ламп в вашем доме. Происходит это потому, что в такие часы особенно много включается потребителей электроэнергии. Из-за этого сильно возрастает ток, который по проводам идет с электростанции в ваш дом. Это, в свою очередь, приводит к тому, что увеличивается падение напряжения на сопротивлении проводов и уменьшается напряжение, подводимое к лампочке, телевизору или мотору электропроигрывателя. Подобное явление можно заметить даже при включении электроплитки, особенно в первый момент, когда спираль плитки не нагрелась и потребляет большой ток.
В радиоаппаратуре очень широкое применение находят детали, единственное назначение которых, оказывается, сопротивление электрическому току. Эти детали так и называются — «сопротивления» и на схеме обозначаются прямоугольником, так же как и любое сопротивление, действующее в цепи (рис. 17).
Рис. 17. В радиоаппаратуре широко применяются специальные детали — постоянные сопротивления.
Сопротивления являются одной из самых распространенных радиодеталей. Они могут использоваться и для образования делителей напряжения, и для шунтирования отдельных участков цепи, и для многих других целей. Все сопротивления можно разделить на две основные группы — проволочные и непроволочные. В каждой из этих групп можно встретить сопротивления постоянные (лист 36) и переменные (лист 37).
Проволочные сопротивления, как об этом говорит само название, делают из проволоки, которую обычно наматывают на керамический каркас. Иногда проволочное сопротивление заливают стеклом (остеклованное сопротивление).