Вход/Регистрация
Том 9. Загадка Ферма. Трехвековой вызов математике
вернуться

Виолант-и-Хольц Альберт

Шрифт:

Теорема Пифагора в изложении Катьяяны.

Эти знания позволяли строить ведические алтари с исключительной точностью. В качестве примера можно привести так называемый алтарь смасана, на котором богам подносился одурманивающий напиток сома. Чтобы жертвоприношения возымели нужный эффект, размеры основания алтаря должны были точно соблюдаться.

В шульба-сутре Апастамбы приводились точные указания по постройке этого алтаря. Джордж Гевергезе Джозеф изложил эти указания в современной нотации так:

Используя веревку, отметьте ХY длиной ровно 36 пад.

Отметьте на этой линии точки Р, Q и R такие, что ХР, XR и XQ равны 5, 28 и 35 пад соответственно.

Проведите перпендикуляры в точках X и Y.

Зная, что треугольники АРХ, DPX, BRY и CRY прямоугольные, а их стороны выражены целыми числами, определите положение точек А, В, С и D. Иными словами, длина AXD должна составлять 24 пады, длина ВYС — 30 пад. Если построение верно, отрезки АС и BD должны пересекать ХY в одной точке О.

АХ = XD = 12 пад

BY = YC = 15 пад

ХР = 5 пад

PR = 23 пады

RQ = 7 пад

QY = 1 пада

ХY = 36 пад

Размеры алтаря смасана

(источник: Джордж Гевергезе Джозеф «Павлиний хохолок»)

Получим следующие пифагоровы тройки:

АРХ и DPX имеют стороны 5, 12, 13.

АОХ и DOX имеют стороны 12, 16, 20.

AQX и DQX имеют стороны 12, 35, 37.

BRY и CRY имеют стороны 8, 15, 17.

BOY и COY имеют стороны 15, 20, 25.

ВХУ и СХУ имеют стороны 15, 36, 39.

Так как стороны этих треугольников выражены целыми числами, их можно было отмерить с удивительной точностью. Если этого было недостаточно, сама конструкция содержала множество дополнительных пифагоровых троек, которые помогали еще больше повысить точность. Так пифагоровы тройки оказались на службе технологий. Это удивительно и красиво. Конечно, было известно множество других троек, которые также использовались при сооружении разных алтарей.

Поэтому очевидно, что ведической цивилизации была прекрасно известна теорема Пифагора. Она обычно использовалась в задачах вида «объединить два равных или неравных квадрата и получить третий квадрат». С ее помощью можно было построить алтарь, по площади равный двум другим. Решение задачи такого типа приведено в шульба-сутрах. В современной нотации оно выглядит так:

Пусть нужно объединить два квадрата — ABCD и PQRS.

Пусть DX = SR.

Следовательно, площадь квадрата со стороной АХ будет равна сумме площадей квадратов ABCD и PQRS.

На рисунке ясно видно построение, описанное в тексте. В нем явно используется теорема Пифагора: AD2 + SR2 = АХ2

(источник: Джордж Гевергезе Джозеф «Павлиний хохолок»)

Вне всяких сомнений, еще в незапамятные времена люди чувствовали красоту арифметики и геометрии. С самого начала им стало понятно, что все фигуры делятся на криволинейные и прямолинейные. Прямоугольные треугольники быстро заняли привилегированное место среди прочих фигур. Два прямоугольных треугольника можно получить, если разделить прямоугольник пополам его диагональю. Привилегированное место в арифметике заняли натуральные числа, которые использовались при счете. В какой-то момент стало понятно, что можно строить прямоугольные треугольники, длины всех сторон которых выражены целыми числами. Открытие равенства суммы квадратов катетов и квадрата гипотенузы было особенным.

Было найдено удивительное и замечательное свойство удивительной и замечательной фигуры, красота, свойственная прямоугольным треугольникам, о которой стоило рассказать потомкам. Пифагор во время одного из своих путешествий в Египет или Месопотамию узнал об этом свойстве и восхитился им, как восхищаемся этим свойством и мы. Он также привел доказательство этого свойства. Быть может, его доказательство было первым, а может быть, и нет. В любом случае Пифагор прочувствовал красоту чисел и фигур и подтвердил, что мир строится по математическим законам. До сих пор неизвестно, кто именно открыл эту теорему и когда.

  • Читать дальше
  • 1
  • ...
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: