Вход/Регистрация
Том 9. Загадка Ферма. Трехвековой вызов математике
вернуться

Виолант-и-Хольц Альберт

Шрифт:

В 1922 году англичанин Луис Морделл (1888–1972) сформулировал гипотезу, гласящую, что для любой алгебраической кривой рода, превышающего 1, множество рациональных точек является конечным. Род алгебраической кривой стал своеобразной мерой ее сложности. Кривые нулевого рода — наиболее простые, с ростом рода возрастает также сложность точек кривой. В 1983 году немецкий математик Герд Фалтингс (р. 1954) получил Филдсовскую премию за доказательство этой гипотезы, дав новый толчок доказательству теоремы Ферма. Для показателя степени n = 2 кривая х2 + у2 = z2 является кривой нулевого рода, и ее решение является бесконечным множеством пифагоровых троек. Но для n > 2 род кривой хn + уn = zn превышает 1. Отсюда следует, что если уравнение теоремы Ферма имеет решения, то их число будет конечным. Математическое сообщество было убеждено, что Морделл и Фальтингс открыли путь к окончательному доказательству теоремы, которое вот-вот будет найдено. Но это было не так.

Связующее звено между двумя мирами

В конце 1980-х годов специалистам был известен ряд гипотез, в случае доказательства которых теорема Ферма также была бы доказана по меньшей мере для некоторых показателей степени. Среди этих гипотез — аbс– гипотеза, гипотеза Шпиро, гипотеза Войты, гипотеза Богомолова — Мияоки — Яу и другие. К удивлению многих, этот закрытый клуб должен был пополниться новым членом — гипотезой Таниямы — Симуры.

Гипотеза Таниямы — Симуры была сформулирована в 50-е и уточнена в 70-е годы XX века. В ней устанавливалось удивительное и неожиданное соотношение между двумя семействами математических объектов, на первый взгляд никак не схожих между собой: эллиптическими кривыми (тесно связанными с кубическими уравнениями, подобными тем, что изучал в свое время Диофант) и модулярными формами, разработанными французским математиком Анри Пуанкаре в конце XIX века. Эта гипотеза была плодом усилий двух японских математиков, Горо Симуры (р. 1930) иЮтаки Таниямы (1927–1958). Молодые ученые познакомились и впоследствии вместе работали в Токио, в опустошенной послевоенной Японии. Прекрасная история их сотрудничества, увы, была омрачена трагическим финалом.

* * *

АВС-ГИПОТЕЗА

Эту гипотезу сформулировали в 1985 году Джозеф Эстерле и Дэвид Массер. В упрощенном виде она звучит так: если а, Ь, с — взаимно простые числа, такие, что а + b = с, и d — произведение различных простых множителей а, b и с, то d будет лишь немногим меньше с.

* * *

Первый мир: эллиптические кривые

Приближенное значение длины кривой можно найти, соединив прямыми конечное множество точек этой кривой, как показано на рисунке:

По мере уменьшения отрезков сумма их длин все больше приближается к длине кривой. Этот процесс известен под названием полигонального приближения кривой. Для некоторых кривых существует значение L — максимально возможный предел полигонального приближения. В этом случае говорят, что кривая имеет длину дуги L. В ходе изучения длин дуг кривых были открыты так называемые эллиптические функции, а затем эллиптические кривые.

Немецкий математик Карл Теодор Вильгельм Вейерштрасс (1815–1897) доказал, что любая эллиптическая кривая определяется кубической кривой вида

у2 = х3 + ах2 + Ьх + с,

где a, b, с — вещественные числа. Для с = 0 и различных значений а и b эллиптические кривые обладают особым свойством, которое продемонстрировано на следующей странице.

Эллиптические кривые для с = 0 и различных значений а и Ь.

Важной задачей теории чисел, которую пытался решить еще Диофант, является поиск целых решений для уравнений подобного типа. Например, кубическое уравнение

у2 = x3 — 2

также можно записать в виде

x3 — у2 = 2.

Целое положительное решение этого уравнения равносильно тому, что натуральное число или числа находятся ровно «посередине» куба и квадрата любых других натуральных чисел. Первым из математиков на этот вопрос ответил не кто иной, как Пьер де Ферма, который доказал, что 26 — единственное число, которое удовлетворяет указанному условию, то есть х3 = 27 и у2 = 25, следовательно, единственными целыми положительными решениями этого уравнения будут у = 5 и х = 3. Чтобы продолжить эту удивительную цепочку, связывающую главных героев нашей истории, добавим, что одним из современных математических инструментов, используемых при изучении эллиптических кривых, является теория Ивасавы — тема докторской диссертации Эндрю Уайлса. Последний неспроста говорил: «В некотором смысле все мои рассуждения следуют пути, проложенному Ферма».

  • Читать дальше
  • 1
  • ...
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: