Вход/Регистрация
Том 9. Загадка Ферма. Трехвековой вызов математике
вернуться

Виолант-и-Хольц Альберт

Шрифт:

Этих трудностей не испугался молодой Ютака Танияма, восьмой ребенок в семье провинциального врача. Из-за враждебности окружающих и проблем со здоровьем ему пришлось в юном возрасте переехать в столицу без средств к существованию, чтобы поступить в университет и продолжить занятия математикой. В 1954 году он подружился с выдающимся коллегой, Горо Симурой, который был на год старше. Друзья часто встречались в дешевых кафе, чтобы обсудить вопросы теории чисел — наиболее привлекательной области для них обоих. Сложно было подобрать более разных по характеру людей: Танияма был очень рассеян, работал урывками, по ночам, и настолько не интересовался чем-либо помимо математики, что его считали эксцентричным. Симура вставал очень рано и начинал работать на рассвете, был организованным и педантичным. В отличие от своего друга, который постоянно носил один и тот же серый костюм и никогда не завязывал шнурков, Симура следил за внешним видом и свободно общался с другими коллегами.

Друзей объединял интерес к последним открытиям на международной математической арене, и в 1955 году они решили организовать симпозиум по теории чисел и пригласить авторитетных математиков со всего мира. Из 36 задач, представленных вниманию участников симпозиума, четыре предложил Танияма. В них очень смутно описывалась связь между модулярными формами, которые на тот момент не привлекали большого внимания специалистов, и диофантовыми уравнениями. Танияма заметил, что члены E– ряда для некоторых эллиптических уравнений точно соответствуют членам М– ряда для определенных модулярных форм, но не мог объяснить фундаментальных причин этого любопытного совпадения.

На симпозиуме обсуждались эти и другие вопросы. По некоторым источникам, блестящий французский математик Андре Вейль в неформальной беседе с Таниямой подсказал ему, что он обнаружил глубокую общую взаимосвязь между модулярными формами и эллиптическими уравнениями. Позднее было показано, что в действительности все было не совсем так. Однако ошибочная трактовка событий настолько укоренилась, что гипотезу Таниямы — Симуры стали называть гипотезой Симуры — Вейля или Таниямы — Симуры — Вейля. Эту ошибку лишь много лет спустя устранил американский математик Серж Ланг, который восстановил истинное положение вещей.

Как бы то ни было, первое предположение Таниямы, высказанное в очень расплывчатой форме, не вызвало большого интереса. Единственным, кто изначально считал эту догадку очень важной, был верный друг Таниямы Симура. Много лет друзья вместе работали над этой гипотезой, стремясь точнее сформулировать ее.

В 1957 году Симуру пригласили работать в Принстон. Он считал, что там сможет обменяться опытом с уважаемыми специалистами и продолжить работу над темой, но трагические события помешали реализации этого амбициозного проекта. 17 ноября того же года Танияма решил покончить с собой. В предсмертной записке он написал: «До вчерашнего дня у меня не было цели покончить с собой. <…> Причину моего самоубийства я не могу и сам понять, но это не результат какого-то конкретного события, нет никаких особенных причин. Единственное, что я точно знаю, — я потерял веру в будущее. <…> Во всяком случае, я не могу отрицать, что это будет предательством с моей стороны, но прошу простить меня за это последнее осознанное действие, которое я совершаю в своей жизни». Ему было 35 лет.

Его кончина не поколебала решимости Симуры, который хотел завершить общее дело в память о своем гениальном друге. В течение многих лет Симура уточнял гипотезу, которая в упрощенном виде гласит, что все эллиптические кривые являются модулярными. Со временем эта гипотеза стала известна под названием гипотезы Таниямы — Симуры. Как сказал американский математик Барри Мазур (о нем мы поговорим немного позже), это была «удивительная гипотеза… но в тот момент ее проигнорировали, так как она слишком опередила свое время. Когда она была представлена, никто не решился доказать ее, столь противоречивой она была. Она объединяет два мира: мир эллиптических кривых и мир модулярных форм. Эти разделы математики были очень подробно изучены, но по отдельности. И вдруг появилась гипотеза Таниямы — Симуры, которая навела на мысль о существовании связующего звена между этими двумя мирами. Математики любят наводить мосты…»

Танияма не дожил до того дня, когда его гениальная догадка оформилась в один из красивейших результатов современной математики. Теперь имена Таниямы и его друга Симуры занимают почетное место в истории математики, и, что более удивительно, их работа заложила фундамент для доказательства самой знаменитой теоремы в теории чисел и математике в целом.

Эпсилон-гипотеза

В глазах математического сообщества гипотеза Таниямы — Симуры и последняя теорема Ферма не имели ничего общего, разве что обе они являлись гипотезами. Но, как мы уже заметили, поиск соотношения между на первый взгляд совершенно разными понятиями, никак не связанными между собой, — одна из главных задач математики. В данном конкретном случае неожиданные параллели обнаружил немецкий математик Герхард Фрай, который занимался теорией чисел. Его привлекала взаимосвязь между этой областью и алгебраической геометрией, и блестящим примером этому служила гипотеза Таниямы — Симуры. В 1978 году он ознакомился с работами американского математика Барри Мазура и был очень впечатлен ими. В них устанавливалась связь между такими понятиями, как модулярность и эллиптические кривые, и Фрай стал работать над тем, чтобы сделать эту взаимосвязь более явной (исходная статья Мазура по этой теме называлась «Модулярные кривые и идеал Эйзенштейна», и среди наиболее увлеченных ее читателей были Кен Рибет и Эндрю Уайлс). Фрай начал вынашивать удивительную идею, которую постарался окончательно оформить за те несколько недель, пока был в Гарварде, где преподавал Мазур. Наконец, в 1984 году на нескольких математических конференциях, прошедших в районе Обервольфах в Германии, Фрай сформулировал гипотезу, которая открыла новый, революционный путь к доказательству последней теоремы Ферма.

Его гипотеза звучала так: пусть дано произвольное решение уравнения этой теоремы, например, аp + bр = ср. Тогда существует эллиптическая кривая вида у2 = х(х — аp)(х + bp), где а, b и с — целые, положительные и взаимно простые, а р — простое число, большее 2. Эта кривая принадлежит к особой группе эллиптических кривых, названных позднее кривыми Фрая и обладающих очень интересной особенностью: они не являются модулярными. Но гипотеза Таниямы — Симуры утверждала, что все эллиптические кривые являются модулярными. Отсюда следует, что если гипотеза Таниямы — Симуры верна, то «отклонений», подобных кривым Фрая, то есть кривых, которые одновременно являются эллиптическими и немодулярными, не существует. Если же гипотеза Фрая была верна, учитывая, что все возможные решения уравнения теоремы Ферма представляли собой кривую Фрая, то гипотеза Таниямы — Симуры о несуществовании таких кривых означала бы, что уравнение теоремы не имеет решений, следовательно… теорема Ферма доказана! Как мы увидим чуть позже, эта неожиданная связь между гипотезами стала для Уайлса точкой опоры, на которой основывалось его доказательство.

Хотя идеи Фрая были очень привлекательными, было ясно, что его гипотеза все еще недостаточно конкретна, чтобы другие математики могли заняться ее доказательством. Для окончательного оформления предположения немецкого математика в виде гипотезы, требовались «математические мускулы». Говоря о «математических мускулах» в контексте математики последних 75 лет, невозможно обойти вниманием французского математика Жан-Пьера Серра (р. 1926). Он — один из всего двух математиков (второй — американец Джон Григгс Томпсон), которые были удостоены двух престижнейших премий по математике: Филдсовская премия была вручена Серру в 1954-м, а Абелевская — в 2003 году. Серр — самый молодой из лауреатов Филдсовской премии: он получил ее в возрасте 27 лет. Его достижение равносильно получению двух Нобелевских премий.

  • Читать дальше
  • 1
  • ...
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: