Шрифт:
Если же температуру понизить до 8—10 градусов, то неочищенное молоко можно хранить 6—9, а очищенное— 15—18 часов. Наилучших показателей удается достигнуть при охлаждении молока до 3—5 градусов: тогда неочищенное молоко хорошо сохраняется в течение 12—15 часов, а очищенное — даже более суток. Ну а замороженное, то есть превращенное в лед молоко, можно хранить очень долго, правда, при этом теряются некоторые его питательные качества.
Охлаждение молока как метод его хранения известно с давних времен. Скажем, уже в средние века в ряде стран Европы при молочных фермах стали делать специальные ледники. Это были погреба, в которые зимой свозили колотый лед, обкладывали его, чтобы не таял, опилками или сеном, а в теплое время года ставили сюда посуду с молоком или молочными продуктами. Кстати, такой ледник в «сарае с погребом» вблизи коровника устроил в своем имении в заокском селе Дворянинове Тульской губернии первый русский ученый-агроном Андрей Тимофеевич Болотов.
Как бы то ни было, а сохранение молока в свежем состоянии возможно более длительный срок — основная задача в борьбе за повышение качества молочных продуктов, особенно при массовом, промышленном их изготовлении. Этого необходимо добиваться, так как из поступающего на перерабатывающие предприятия молока с большим содержанием микроорганизмов и повышенной кислотностью нельзя получить высококачественные и стойкие при хранении продукты питания.
Итак, на вопрос, вынесенный в заглавие, следует ответить, что молоко еще на ферме нужно охлаждать, а затем на заводе нагревать (пастеризовать) и снова охлаждать, причем все виды термической обработки очень важно выполнять своевременно, в кратчайшие сроки.
Однако сделать это не так-то просто: ведь, скажем, на крупных животноводческих фермах промышленного типа ежесуточно надаивают по нескольку десятков тонн молока, а его поступление на перерабатывающие предприятия исчисляется уже сотнями тонн.
Для охлаждения и нагревания молока применяют теплообменные аппараты и установки фермского или производственного назначения самых различных конструкций и мощностей. В качестве тепло- или хладоно-сителей используют пар, горячую или холодную артезианскую воду, искусственный холод, получаемый в компрессорных установках, и т. д. А чтобы более понятно рассказать об устройстве и работе соответствующих технических средств, напомним краткие сведения по физическим основам теплообмена и теплопередачи, которые, впрочем, изучаются еще в школе.
Даже из повседневного опыта мы знаем, что тело (твердое, жидкое или газообразное) с высокой температурой всегда теряет тепло и охлаждается, а окружающие его тела, имеющие более низкую температуру, получая тепло, нагреваются. Следовательно, тепло может передаваться. Процесс передачи тепла от одного тела к другому или от одной его части к другой называется теплообменом. Заметим, что теплообмен всегда совершается в определенном направлении: от объектов с более высокой температурой к объектам с более низкой температурой.
Теплообмен может осуществляться опосредствованно, через разделительный материал (стенку), или путем смешения теплоносителя и нагреваемого тела, как это происходит, например, в аппаратах для получения горячей воды — инжекторах, где воду нагревают, смешивая ее с паром. Пар, поступающий в инжектор, отдает свое тепло воде, конденсируется и смешивается с ней. Затем вся масса нагретой воды подается на циркуляцию в бойлер, выравнивается по температуре и далее направляется в секцию пастеризации теплообменного аппарата.
Теплообмен между двумя жидкими или газообразными средами, происходящий через разделяющую их стенку, называется теплопередачей. А поскольку применяемые для обработки молока теплообменники представляют собой аппараты, в которых молоко и тепло- или хладоноситель (пар, горячая или холодная вода, фреон и т. п.) обычно разделены металлической стенкой, принцип их действия основан на теплопередаче.
Процесс перехода тепла от более нагретой жидкой среды к менее нагретой через металлическую стенку теплообменного аппарата можно представить себе следующим образом. Тепло от горячей среды переходит к соприкасающейся с ней поверхности стенки, так как между ними существует разность температур. Далее тепло по металлу проникает на противоположную сторону стенки, поскольку и они находятся в разных температурных условиях (одна контактирует с горячей, а другая с холодной средой). Наконец, тепло передается от нагревающейся поверхности стенки к более холодной среде. Процесс продолжается, пока температуры всех элементов не выравняются.
На теплопередачу аппаратов, предназначенных для тепловой обработки молока, влияют: размеры и формы теплопередающих поверхностей, средняя разность температур теплоносителя и молока, скорости движения теплоносителя и молока, вязкость жидкостей, участвующих в теплообмене, теплопроводность металла и толщина стенок, толщина молочного пригара (осадка) и накипи (наслоений) на теплопередающих стенках.
При слоистом (ламинарном) движении теплообменных сред, которое возникает при больших вязкостях жидкости и невысоких скоростях потока, тепло передается через стенку значительно хуже, чем при вихревом (турбулентном) движении. Поэтому в теплообменных аппаратах стремятся создавать турбулентное движение молока и теплоносителя, что может быть достигнуто благодаря увеличению скорости движения жидкостей, применению перемешивающих рабочих органов, использованию волнистых и рифленых теплообменных поверхностей, способствующих образованию вихревых потоков.
Движение теплоносителя и молока в теплообменных аппаратах относительно друг друга может быть попутным (прямоток) или встречным (противоток) .
Анализ конкретных кривых изменения температур жидкостей для охладителей одинаковой производительности и при одних и тех же расходах молока и хладоносителя показывает, например, что в противоточной системе молоко, нагретое до 85 градусов, можно охладить водой с начальной температурой 10 градусов до 22 градусов, в то время как в прямоточной системе при тех же условиях его температура снижается только до 32 градусов. Это происходит потому, что при прямотоке продукт и теплоноситель поступают с одной стороны аппарата и движутся в одном направлении. Вначале теплообмен между жидкостями весьма интенсивен, затем разность температур между ними уменьшается, причем на первых порах резко, а потом медленнее. Следовательно, в такой системе эффективность теплообмена невелика.