Вход/Регистрация
Бесчисленное поддается подсчету. Кантор. Бесконечность в математике
вернуться

Коллектив авторов

Шрифт:

Задача заключается в том, чтобы установить взаимно однозначное соответствие между вещественными числами, находящимися между точками 0 и 1, и парами чисел между 0 и 1 так, чтобы каждому числу соответствовала единственная пара, а каждой паре — только одно число.

Предположим, есть число 0,213421342134... Какой паре координат оно соответствует? Возьмем цифры, стоящие в нечетных позициях после запятой (первую, третью, пятую и так далее). Это числа 232323... Затем рассмотрим четные позиции. Это числа 141414... Число 0,213421342134... соответствует, таким образом, паре координат 0,232323... и 0,141414...

Аналогично, если у нас есть точка с координатами 0,232323... и 0,141414..., чтобы получить соответствующую точку на отрезке, возьмем первое число абсциссы, первое число ординаты, потом второе число абсциссы, второе число ординаты и так далее. Мы получим число 0,21342134... (см. рисунок 3).

ОТРЕЗКИ РАЗНОЙ ДЛИНЫ

Теперь докажем, что два отрезка разной длины эквивалентны. Сначала проведем две прямые через концы отрезков и обозначим точку их пересечения буквой О. Затем проведем еще прямые через точку О. На рисунке показано, как с их помощью соотнести с каждой точкой Р на одном отрезке точку F на другом.

Еще один пример. Если у нас есть точка с координатами 0,2 и 0,7, запишем эти числа как 0,20000... и 0,70000... (количество нулей не имеет значения). Этой паре будет соответствовать число 0,270000..., то есть 0,27. На рисунке 4 показаны и другие примеры этого соответствия. То есть мы видим, что каждому числу в промежутке от 0 до 1 соответствует конкретная пара координат и каждой паре координат соответствует конкретное число. Другими словами, мы установили взаимно однозначное соответствие между любым отрезком и любым квадратом: следовательно, мы можем утверждать, что у этих множеств одинаковая мощность. Выше мы сказали, что любой отрезок равномощен полной оси. Аналогично, мы можем доказать, что мощность квадрата такая же, как мощность всей плоскости.

Таким образом, мы приходим к выводу, что любая прямая, любой отрезок, любой квадрат и плоскость имеют одинаковую мощность. Это верно и для трехмерных объектов, так как можно доказать, что мощность отрезка равна мощности куба, которая, в свою очередь, равна мощности всего трехмерного пространства.

РИС. 3: Взаимно однозначное соответствие между отдельными числами и парами чисел.

РИС. 4: Некоторые примеры соответствия между числом, находящимся между О и 1, и парой чисел.

Вернемся к основному вопросу задачи: существует ли множество с большей мощностью, чем мощность вещественных чисел? Мы все еще не нашли решение: ни квадрат, ни плоскость, ни трехмерное пространство (все это бесконечные множества точек) не годятся в качестве ответа. Однако нет у нас и аргументов, доказывающих, что такое множество существовать не может.

ОТРЕЗОК, ОКРУЖНОСТЬ, ПРЯМАЯ

На рисунке 1 показано, как можно доказать равномощность окружности с выколотой точкой (ее отсутствие обозначено пустым кружком) отрезку без концов, искривляя его. Оба эти множества точек — в сущности одно и то же, их единственное различие заключается в графическом изображении на плоскости. В одном случае они располагаются на прямой, в другом — по окружности. На рисунке 2 показано, как установить взаимно однозначное соответствие между окружностью без точки и прямой. Каждой точке Р окружности соответствует точка F на прямой (Р и Р' должны всегда находиться на одной линии с недостающей окружности точкой). Исходя из транзитивного свойства мы заключаем, что отрезок без концов эквивалентен замкнутой оси.

РИС.1

РИС. 2

В 1877 году сам Кантор не знал, существует ли множество с мощностью большей, чем у вещественных чисел, и смог дать ответ на этот вопрос только в 1883 году.

КОНТИНУУМ-ГИПОТЕЗА

Множество вещественных чисел обладает большей мощностью, чем множество натуральных чисел. Возникает вопрос: есть ли множество с еще большей мощностью? Но логичным образом рождается еще один вопрос: существует ли множество со средней мощностью? То есть множество с мощностью большей, чем у натуральных чисел, но меньшей, чем у вещественных.

Все множества, эквивалентные множеству натуральных чисел, Кантор называл счетными: например, множества целых и рациональных чисел счетные, а множество вещественных — нет. Поэтому вопрос можно переформулировать и так: существует ли бесконечное несчетное множество с мощностью, меньшей, чем у вещественных чисел?

Кантор несколько лет безуспешно пытался найти пример такого множества. Множества натуральных, целых, рациональных и алгебраических чисел являются счетными. Иррациональные и трансцендентные числа — несчетны, но эквивалентны вещественным числам, и, следовательно, их мощность не меньше.

В конце концов, после того как все попытки Кантора найти среднее множество провалились, в 1877 году он пришел к выводу, что его не существует, и сформулировал так называемую «континуум-гипотезу»: не существует никакого бесконечного множества, мощность которого была бы промежуточной между мощностью натуральных и вещественных чисел (см. рисунок).

Гипотеза — это утверждение, которое пока не было ни доказано, ни опровергнуто. В данном случае для подтверждения гипотезы нужно было бы доказать, что не существует множества с промежуточной мощностью между множеством натуральных и вещественных чисел, а для опровержения — найти такое множество.

  • Читать дальше
  • 1
  • ...
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: