Шрифт:
В системе же отсчета, связанной с Землей, экспресс пройдет расстояние Москва — Ленинград, то есть S– > = 650 километрам. Но так как скорость определяется отношением S/t, то она также оказывается величиной относительной и зависит от системы отсчета.
Между прочим, надо заметить, что подобные примеры довольно часто сложнее, чем четкие математические формулы.А как интервал времени t? Он, может быть, тоже зависит от системы отсчета?
Может ли оказаться, что, определяя время движения экспресса Москва — Ленинград, мы получим в системе отсчета, связанной с Землей, один результат, а в системе, связанной с самим экспрессом, — другой? Или нелепа сама постановка такого вопроса? Надеюсь, что такой мысли ни у кого не появилось.
Время — физическое понятие, которое ввели, используя опытные данные. В классической физике мы полагаем, что интервал времени t одинаков во всех системах отсчета. И это утверждение сделано как обобщение опытных фактов. Но если, паче чаяния, новые опыты покажут, что в различных системах отсчета интервал времени различен, мы примем это с удивлением, но без ужаса [19] .
19
Именно это и пришлось сделать физикам, когда была создана теория относительности. Но пока скорости много меньше световой, можно считать, что интервал t неизменен во всех системах.
По этому поводу, пожалуй, уместно вспомнить одного персонажа Марка Твена, твердо уверенного в том, что в деревне время течет существенно медленнее, чем в городе. Полное незнание физики позволило выдвинуть ему эту смелую гипотезу, причем он, конечно, также опирался на свое нелепое, но интуитивное (основанное на «эксперименте») представление о времени.
Однако в классической физике понятие времени таково, что интервал t имеет абсолютное значение независимо от системы отсчета.
Следовательно, скорость, так же как и пройденный путь, — относительное понятие и при переходе от одной системы отсчета к другой изменяется точно так же, как и путь.
Ну вот, собственно, все, что стоило напомнить о скорости. Владея понятием скорости, мы совершенно аналогично определяем ускорение:
Ускорение по отношению к скорости — то же, что скорость по отношению к пути.
Настойчивые повторения. Выводы и нерешенный вопрос.Подведем итоги. Мы очень подробно и многократно повторяли, по существу, совершенно тривиальную мысль, и тем не менее ее стоит повторить еще раз:
«Только объявив какие-то реальные физические тела неподвижными, указав систему отсчета, можно говорить о механическом движении. Без указания системы отсчета слова „покой“ и „движение“ совершенно бессодержательны».
Как видно из цитированных отрывков «Начал», Ньютон ясно сознавал все значение понятия системы отсчета.
Но он полагал, что есть некая особая, выделенная, замечательная, неповторимая — абсолютная система отсчета, и даже предложил способ определения абсолютных (истинных) движений (опыт с ведром!).
Существует ли такая система отсчета, мы не выяснили. И именно поиски ответа на этот так просто поставленный вопрос приведут к теории относительности.
В следующей главе мы увидим, что законы механики таковы, что нельзя выделить какую-то одну особую систему отсчета.
Есть целый класс совершенно равноправных с точки зрения механики систем, так называемых «инерциальных систем», о которых никак не скажешь, что какая-то одна из них чем-либо выделяется.
Но тогда можно поставить вопрос так: нельзя ли найти эту загадочную абсолютную систему, исследуя не механические явления, а какие-либо другие? Допустим, электрические, магнитные, гравитационные или еще что-либо?
Может быть, существует все же одна замечательная система, данная нам свыше, и совершенно отличная от других?
Возможно, например, что, изучая электромагнитные явления, можно отыскать какую-то особую систему отсчета?
Начиная с седьмой главы мы (к сожалению, очень поверхностно) проследим за попытками дать ответ на этот вопрос, за теми поисками, которые завершились созданием теории относительности.
Итак (снова и снова!), перед нами проблема: «Можно ли при помощи любого физического опыта отыскать такую одну замечательную систему отсчета, которая по своим физическим свойствам резко отличается от всех остальных мыслимых систем?»
Глава V,
Счастливец Ньютон, систему мира можно установить только один раз.
Лагранж