Вход/Регистрация
Физика учит новый язык. Лейбниц. Анализ бесконечно малых
вернуться

Коллектив авторов

Шрифт:

Лейбниц разделил на два каждый член, разложив дроби на разность двух:

1/2+1/6+1/12+1/20+...+1/2+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+...+1/2+1/2 = 1

следовательно, значение искомой суммы членов данного ряда составляет 2(1 + 1).

Также Лейбниц сформулировал то, что известно как теорема сходимости знакочередующихся рядов, то есть рядов, в которых чередуются складываемые и вычитаемые члены. В основном это выражение вида:

(-1)n • an = a0– a1 + a2– a3 + a4– ... при an >= 0.

n=0

Данный критерий впервые появился в письме, адресованном Иоганну Бернулли (1667-1748) в 1713 году.

Для многих математиков критерии сходимости, которыми они пользовались, были основаны на том, чтобы найти частичные суммы ряда членов, например п членов. Они пытались найти упрощенное выражение, связанное с гг, а затем изучить, что произойдет, если число членов возрастет до бесконечности. Но не все математики были согласны с данным подходом, поскольку появлялись так называемые логические парадоксы, то есть ряды, расходящиеся при одном методе, а при применении других методов — наоборот.

Один из главных парадоксов того времени был связан с нахождением суммы знакочередующегося ряда, в котором an = 1 для любого n. То есть речь идет о ряде:

(-1)n = 1-1+1-1+1-1+1-1+...

n=1

Если взять четное число членов, частичная сумма равна 0, в то время как если взять нечетное число, частичная сумма равна 1. Лейбниц в итоге присвоил этой сумме значение 1/2.

Простое рассуждение для получения этого решения следующее:

5=1-1 + 1-1 + 1-1 + 1 -... = 1 - (1-1 + 1-1 + 1-1 +...) = 1-S,

откуда после упрощения получается 2S = 1, и, следовательно, искомая сумма равна S = 1/2.

Во время визита к Роберту Бойлю Пелл указал Лейбницу на то, что математик Франсуа Рейно уже опубликовал общий метод прерывания рядов с помощью разностей. Ученый ознакомился с данным исследованием, выяснил, что его метод отличается от метода Рейно, и написал свою работу для представления в Королевском обществе. Однако эта работа была встречена довольно холодно, и его даже обвинили в плагиате. Сам Лейбниц позже признал, что там действительно не содержалось никакого нового результата, а вся изюминка заключалась в новом представленном методе.

Провал работы заставил ученого понять, что ему очень не хватает математических сведений: он не знал о многом из того, что уже было опубликовано. Поэтому Лейбниц потратил почти год на самосовершенствование в этой области.

НОВОЕ ЗАНЯТИЕ

Когда Лейбниц покидал Париж, он уже был советником герцога Ганновера, то есть занимал должность, оставшуюся за ним до конца жизни. С 1677 года Лейбниц стал тайным советником герцога Иоганна Фридриха: это была наиболее ответственная и оплачиваемая должность. Решив свои финансовые проблемы, ученый смог использовать возможности, которые давало ему его новое положение, для исследования интересующих его научных проблем. Сначала Лейбниц нехотя согласился на эту должность, но позднее выражал свое удовлетворение ролью, которую играл.

Став библиотекарем герцога, он начал расширять библиотеку, заполняя ее книгами из всех самых важных областей знания, больше заботясь о качестве, чем о количестве, для чего использовал собственный опыт и связи в ученом мире. Новое

занятие позволяло ему ездить в другие города в поисках интересных книг для герцогской библиотеки. Например, в 1678 году Лейбниц посетил Гамбург, чтобы купить библиотеку Мартина Фогеля, последователя немецкого ученого Иоахима Юнга.

По возвращении он написал для герцога ряд сочинений на такие разнообразные темы, как улучшение государственного управления, организация архивов, практика сельского хозяйства и работа на фермах. В них Лейбниц доказывал, что, заботясь об увеличении благосостояния народа, нужно иметь четкое представление об имеющихся в распоряжении ресурсах, как человеческих, так и природных. Кроме того, он изложил герцогу идею, которая только начинала зарождаться в его голове: создать в Германии академию наук. Лейбниц даже представил ряд изобретений, предназначенных для повышения эффективности горнодобывающей промышленности, таким образом намереваясь получить средства на создание этого учреждения.

Несмотря на то что Лейбниц обосновался в Ганновере, он не потерял связи с образованными людьми и учеными Лондона и Парижа. Он продолжал получать информацию о достижениях науки и вел переписку с влиятельными людьми своего времени. Например, в то время ученый переписывался с Анри Жюстелем (1620-1693), который был секретарем короля Франции, хотя позже и переехал в Англию. Для Жюстеля Лейбниц осуществил небольшое исследование истории графского рода Ловенштайн. Это была первая написанная им историческая работа.

ПОД НОВЫМ РУКОВОДСТВОМ

Герцога Иоганна Фридриха сменил его брат Эрнст Август (1629-1698), герцог Брауншвейг-Люнебургский, который позже стал первым курфюрстом Ганновера, то есть одним из тех, кто имел право участвовать в выборах императора Германии.

После прибытия в Ганновер Лейбниц познакомился также с Софией (1630-1714), супругой Эрнста Августа. Она была дочерью Фридриха V, короля Богемии, и Елизаветы Стюарт, принцессы Баварии, Шотландии и Англии, а также внучкой Якова I, короля Англии (он же Яков VI, король Шотландии). Следовательно, София являлась претенденткой по прямой линии на трон Великобритании как самая прямая протестантская наследница королевы Англии, и только ее смерть за два месяца до кончины королевы Анны Стюарт помешала ей взойти на трон. Ее сын Георг Людвиг позже стал королем Англии под именем Георга I и основателем Ганноверской династии.

  • Читать дальше
  • 1
  • ...
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: