Шрифт:
Отношения между Лейбницем и Софией становились с годами все более близкими и в итоге вылились в крепкую дружбу. Принцесса очень интересовалась интеллектуальной деятельностью во многих сферах, которые она часто обсуждала с Лейбницем, что подтверждает существующая обширная переписка.
Должности Лейбница были сохранены. Он написал доклад для нового герцога, где сообщал о деталях своей карьеры и о ряде проектов, которые задумал. Лейбниц предложил дополнить герцогскую библиотеку лабораторией и музеем, а также создать герцогскую типографию. В документе, направленном первому министру Францу Эрнесту фон Платену (1631- 1709), он предложил свои услуги для составления истории династии Брауншвейг-Люнебург. Лейбниц явно не представлял себе, в какие дебри забирается, поскольку это исследование будет преследовать его всю оставшуюся жизнь.
НОВЫЕ ПРОЕКТЫ
Несмотря на многочисленные задания, которые он получал от герцога, у Лейбница были силы и способность заниматься исследованиями во многих областях науки. В 1681 году Отто Менке посетил Ганновер и встретился с Лейбницем, чтобы поговорить об издании журнала "Акты ученых". Менке также попросил коллегу прислать одну из своих работ для публикации в журнале. Кроме собственных исследований, Лейбниц также писал рецензии на другие сочинения, как, например, на труд Джона Уоллиса по алгебре или на работу математика Жака Озанама, в которой он представлял свои тригонометрические таблицы.
Он продолжал писать сочинения для герцога в абсолютно разных сферах. Например, Лейбниц исследовал методы улучшения организации армии и повышения ее боевого духа и продумывал способы сохранения физического и психического здоровья солдат. Для этого ученый предлагал снабдить их продовольствием, одеждой и подходящими лекарствами, а также использовать их в мирное время на общественных работах, таких как строительство сооружений, дренаж болот и проведение канализации, что сделало бы более сносной рутину военных тренировок. Кроме того, Лейбниц представил проект профилактических средств для борьбы с эпидемией, которая в то время терзала Европу, поскольку врачам не удалось найти никаких средств против нее. Он предложил помешать перемещению зараженных людей и изолировать их.
По поручению герцогского советника Отто Гроте Лейбниц подготовил меморандум об увеличении числа курфюршеств в Германии. В то время существовало восемь курфюршеств — пять католических и три протестантских. В своей работе ученый отстаивал необходимость создания девятого, протестантского. Через несколько лет, в 1692 году, герцог Эрнст Август был объявлен курфюрстом. Лейбниц участвовал в проекте от начала и до конца и после предоставления герцогу избирательного права создал памятную медаль, а также подготовил речь, содержащую исторический обзор, которую зачитал Отто Гроте на процедуре получения титула от императора.
По сути Лейбниц принимал участие в любом политическом деле в Ганновере. Во время одной из поездок в Италию ученый по просьбе принцессы Софии добился политического альянса посредством брака между Шарлоттой Фелицитас, старшей дочерью герцога Иоганна Фридриха, с герцогом Ринальдо из Модены, а также помолвки младшей дочери герцога, Вильгельмины, с королем Венгрии и будущим императором Иосифом I Габсбургским.
Кроме научных исследований самой важной задачей Лейбниц в эти годы была, как мы уже сказали ранее, разработка истории династии Брауншвейг-Люнебург для герцога. Лейбниц считал, что история и генеалогия стали науками и поэтому для них необходима достоверная документация, основанная на первичных источниках и работах авторов эпохи. Таким образом, ученый добился у герцога пожизненной пенсии и освобождения от обычных обязанностей, чтобы посвятить себя исключительно этому делу.
Кроме того, в то время Лейбниц уже совершил открытие, с которым вошел в историю как один из самых выдающихся математиков: анализ бесконечно малых.
МАТЕМАТИКА В ДРЕВНЕЙ ГРЕЦИИ
Ученые Древней Греции создали математику как науку. Предыдущие цивилизации использовали ее для решения практических проблем повседневной жизни. Например, египтяне пользовались теоремой Пифагора для построения прямого угла и с ее помощью могли восстанавливать границы полей, затопленных Нилом. Для греков занятие математикой было самоцелью, их не волновало ее практическое применение. Это не означает, что они также не использовали свои знания для нахождения решений в конкретных ситуациях, но они четко разграничивали, как мы могли бы сказать, теорию и практику. Например, древнегреческие ученые различали арифметику, то есть абстрактную теорию чисел, и логистику, что по- гречески означало "счетное искусство", то есть прикладную арифметику. Они считали важным изучение математики как таковой и посвящали этому свои работы, но в известной степени презирали прикладную математику, с помощью которой решались каждодневные задачи.
В более позднюю эпоху, во время расцвета Александрии, греческие ученые, продолжая культивировать чистую науку, начали развивать и ее прикладную часть. Александрийцы изобрели насосы, чтобы поднимать воду из колодцев, шкивы и системы зубчатых передач, чтобы передвигать большие грузы; они использовали силу воды и пара для движения машин, огонь, чтобы заставить статуи двигаться, или сжатый воздух, чтобы бросать предметы на большие расстояния.
В то время как в предыдущих цивилизациях знания приобретались с помощью опыта, индукции или экспериментов, древнегреческие ученые развивали дедукцию. На основе ряда понятий выводились новые умозаключения при применении строгих дедуктивных правил рассуждения. Например, Аполлоний (ок. 262-190 до н. э.) в своей книге "Конические сечения" представил 487 пропозиций, выведенных из аксиом, собранных в "Началах" Евклида. Главной целью ученых Древней Греции было желание понять физический мир, они считали математические законы основой природы и полагали, что эти законы необходимы для изучения Вселенной. Это был критический и рациональный способ познания природы.
Древнегреческие математики должны были доказывать свои рассуждения исчерпывающе, не оставляя возможности для каких-либо лазеек. К такому подходу математика вновь обратилась только в XIX веке, и именно благодаря ему древнегреческие работы были настолько совершенны, что невозможно было понять, как получались столь удивительные результаты. Считалось, что определенную роль сыграла изобретательность древнегреческих ученых, некая счастливая мысль, которая помогала им прежде прийти к заключению, а уже потом исчерпывающим образом его доказать. Многие математики начиная с эпохи Возрождения были убеждены в том, что ученые Древней Греции владели каким-то секретным методом. Это видно из следующего комментария Декарта: