Шрифт:
9.40. Негодные схемы
На рис. 9.96 показаны схемы с основными грубыми ошибками сопряжения. Для каждой схемы попытайтесь объяснить, в чем состоит ошибка и как ее устранить.
Рис. 9.96. а — формирователь задержанного фронта; б — индикатор логического состояния;
Рис. 9.96. в — сопряжение элемента ТТЛ с высокоомным выходом (две неудачные схемы); г — повышение нагрузочной способности элемента ТТЛ с помощью повторителя;
Рис. 9.96. д — проводное ИЛИ на вентилях с активной нагрузкой; е — счетчик пересечений нуля;
Рис. 9.96. ж — RS-триггер; з — сопряжение элемента ТТЛ со схемами высоких уровней.
Дополнительные упражнения
(1) Постройте схему для обнаружения кратковременного пропадания напряжения питания +5 В. Схема должна иметь кнопку СБРОС и светодиод для индикации НЕПРЕРЫВНОГО ПИТАНИЯ. Сделайте так, чтобы она работала от напряжения +5 В.
(2) Почему нельзя построить 2n– разрядный ЦАП с помощью двух n– разрядных ЦАП и пропорционального суммирования их выходов (ВЫХ1 + ВЫХ2/2n)?
(3) Убедитесь в том, что максимальное значение сигнала на выходе псевдослучайного генератора шума на рис. 9.90 равно +8,68 В.
(4) Эксперимент осуществляется под управлением программируемого вычислителя, соединенного с различными исполнительными и измерительными приборами. Вычислитель дает приращение различным переменным, находящимся под его управлением (например, длине волны излучения, поступающего от монохроматора), и обрабатывает результаты соответствующих измерений (например, количество переданного света, скорректированное с учетом известной чувствительности детектора). В результате образуются пары значений х, у. Задача состоит в том, чтобы спроектировать схему для вычерчивания графика на аналоговом графопостроителе. Выходы вычислителя для каждой пары значений представляют собой два 3-разрядных (двоично-десятичных) символа. Для уменьшения количества связей числа представляются по одному в единицу времени («бит — параллельно, символ — последовательно») в сопровождении 2-разрядного адреса. Импульс СИМВОЛ ВЕРЕН показывает, что данные и адрес правильны и их можно, например, зафиксировать. Уровень х'/у сообщает о том, какому числу принадлежит выводимый символ (х или у). Это показано на рис. 9.97.
Рис. 9.97.
Данные передаются в следующем порядке: хn (МЗЦ)… хn(СЗЦ), yn(МЗЦ)… уn(СЗЦ); таким образом, после поступления СЗЦ величины у (1 = 0, А2 = 1, х'/у = 1) известно, что вы получили всю пару х, у. В этот момент вы должны обновить цифры, поступающие на ЦАП (не обновляйте их по одной). Нет необходимости присваивать ИМС отдельные номера; дайте им общее наименование, например D-триггер или дешифратор «1 из 10». Укажите, в каких местах входы или выходы инвертируются (с помощью маленьких кружочков). Считайте, что в вашем распоряжении имеются ЦАП, которые воспринимают 3-разрядные двоично-десятичные символы с логическими уровнями и обладают токовыми выходами от 0 до 1 мА, соответствующие входным кодам от 000 до 999. Поскольку двухкоординатный графопостроитель имеет 10-вольтовую полную шкалу, вам придется преобразовать ток в напряжение. Проверьте свою изобретательность, введя дополнительное усложнение: предположите, что размах выходного сигнала ЦАП всего 1 В.
Глава 10
МИКРОЭВМ
Перевод К.Г.Финогенова
Мини-ЭВМ, микроЭВМ и микропроцессоры
Доступность недорогих малых ЭВМ, стоимостью порядка 1 К долл., сделала их привлекательными для использования при управлении экспериментом и технологическими процессами, для накопления данных и выполнения оперативных вычислений. Малые ЭВМ широко используются в лабораторных исследованиях и промышленности, поэтому информация об их потенциальных возможностях, языках программирования и способах сопряжения с внешними устройствами составляет существенную часть электронного «ноу-хау».
МикроЭВМ эволюционировали от ранней мини– ЭВМ — малой электронно-вычислительной машины, центральный процессор (ЦП) которой был собран на микросхемах малой и средней степени интеграции, как правило расположенных на одной или нескольких больших печатных платах. По мере совершенствования микросхем БИС стало возможно реализовать рабочие характеристики центрального процессора мини– ЭВМ на одном кристалле высокой степени интеграции; таким образом, микроЭВМ — это электронно-вычислительная машина, центральный процессор которой собран на нескольких, а зачастую на одной микросхеме БИС, а тип микросхемы ЦП или соответствующий микропроцессорный комплект определяет тип микроЭВМ. Например, на смену популярным мини-ЭВМ фирмы DEC PDP-11, ЦП которых занимал несколько печатных плат, пришло семейство ЭВМ под таким же названием, ЦП которых был собран на нескольких микросхемах БИС, заменивших большое количество микросхем малой и средней степени интеграции; приблизительно в то же время фирма Motorola представила высокопроизводительный микропроцессор МП (серии 68000), несомненно испытавший влияние PDP-11, рабочие характеристики которого во многом были сходны с характеристиками ЦП этой ЭВМ.
В основе большинства современных малых ЭВМ, являющихся на самом деле микроЭВМ, лежат впечатляющие характеристики современного поколения микропроцессоров. Не так давно возникло идиоматическое выражение «супермини-ЭВМ», по-видимому, для того, чтобы выделить класс ЭВМ, имеющих более высокие технические характеристики и подчас конкурирующих с большими и дорогостоящими ЭВМ, построенными в соответствии с традиционными техническими решениями. В некоторых случаях различия между ними относятся скорее к габаритным размерам или количеству внешних устройств, чем к степени интеграции ЦП.