Вход/Регистрация
Скрытая реальность. Параллельные миры и глубинные законы космоса
вернуться

Грин Брайан

Шрифт:

Упрёк со стороны столь уважаемой фигуры стал для Леметра серьёзным ударом — но ненадолго. В 1929 году, используя крупнейший в мире на тот момент телескоп в обсерватории Маунт-Вилсон, американский астроном Эдвин Хаббл получил убедительные свидетельства в пользу того, что все далёкие галактики двигаются прочь от Млечного Пути. Фотоны, которые изучал Хаббл, проделали долгий путь к Земле, неся с собой ясное сообщение: вселенная не статична — она расширяется. Фундамент, который Эйнштейн подвёл под космологическую постоянную, обрушился. Модель Большого взрыва, описывавшая космос, который начал расширяться из чрезвычайно плотного состояния и продолжает делать это по сей день, обрела широкую известность как научный сценария творения. [3]

3

В модели Большого взрыва расширение пространства вовне во многом подобно движению вверх подброшенного мяча: сила притяжения гравитации тянет обратно движущийся вверх мяч, и тем самым замедляет его движение; аналогичным образом сила притяжения гравитации действует на разлетающиеся галактики и тем самым тормозит их движение. Ни в одном из случаев движение вперёд не требует отталкивающей силы. Однако вы всё равно можете спросить: мяч был запущен вверх рукой, а что «запустило» пространство и его расширение вовне? Мы вернёмся к этому вопросу в главе 3, где увидим, что современная теория постулирует непродолжительную вспышку гравитационного отталкивания, действующего в самые ранние моменты космической истории. Мы также увидим, что более точные данные свидетельствуют о том, что расширение пространства не замедляется со временем, что приводит к удивительному — и это станет ясно в последующих главах — воскрешению потенциально глубокого смысла космологической постоянной.

Леметр и Фридман были реабилитированы. Фридман снискал репутацию учёного, который первым исследовал решения, описывающие расширяющуюся вселенную, а Леметр стал известен как исследователь, который независимо получил эти решения и выстроил на их основе ясные космологические сценарии. Их работа была признана триумфом математического подхода к изучению космоса. Эйнштейна, напротив, оставили досадовать на то, что он вообще решил взяться за третью строку налогового бланка общей теории относительности. Если бы над ним не довлело ничем не подкреплённое убеждение в статичности вселенной, он бы не ввёл в свои уравнения космологическую постоянную и сумел бы предсказать расширение вселенной за десять с лишним лет до того, как его обнаружили экспериментально.

Однако история космологической постоянной была далека от завершения.

Модели и данные

В космологической модели Большого взрыва есть один момент, который представляется весьма существенным. Эта модель даёт нам не один космологический сценарий, а целый их набор; все они подразумевают расширение вселенной, но отличаются общей формой пространства и, в числе прочего, расходятся в ответе на вопрос о том, является ли всё пространство в целом конечным или же бесконечным. Поскольку последнее различие оказывается жизненно важным для размышлений о параллельных мирах, я опишу имеющиеся возможности подробнее.

Космологический принцип — предполагаемая однородность космоса — налагает ограничения на геометрию пространства, поскольку большинство геометрических форм недостаточно однородны, чтобы подойти под эти требования: они вспучиваются в одном месте, уплощаются в другом и скручиваются в третьем. Однако из космологического принципа не следует единственность формы трёх измерений нашего пространства — он лишь проводит жёсткий отбор среди кандидатов, ограничивая имеющиеся возможности. Наглядно представить возможные варианты — непростая задача даже для профессионала, однако нам поможет тот факт, что ситуация в двух измерениях, которую мы можем изобразить без труда, является математически точным аналогом трёхмерной картины.

Для начала рассмотрим с этой целью идеально круглый бильярдный шар. Его поверхность двумерна (положение точки на его поверхности, как и на поверхности Земли, мы можем задать двумя фрагментами данных — скажем, широтой и долготой, — а именно это мы и подразумеваем, когда говорим, что форма двумерна) и совершенно однородна в том смысле, что любое место на ней неотличимо от остальных. Математики называют поверхность бильярдного шара двумерной сферой и говорят, что она имеет постоянную положительную кривизну. «Положительность» здесь означает, грубо говоря, что ваше отражение в сферическом зеркале будет выглядеть раздувшимся наружу, а «постоянность» — что любая сторона сферы будет одинаково искажать отражение.

Теперь представим себе идеально гладкий стол. Поверхность стола, как и поверхность бильярдного шара, однородна (или почти однородна). Если бы вы были муравьём, гуляющим по столу, вашему взору открывался бы один и тот же вид, где бы вы ни находились — при условии, что это далеко от края стола. Впрочем, восстановить полную однородность не так уж трудно: мы просто должны вообразить стол без краёв. Сделать это можно двумя путями. Представьте себе стол, который бесконечно тянется влево, вправо, вперёд и назад. Это не совсем обычный стол — его поверхность бесконечна, — но упасть с него нельзя, а значит, мы достигли поставленной цели — убрали края. Альтернативный вариант — поверхность, имитирующая старую компьютерную игру: когда мистер Пакман исчезает за левым краем, он немедленно появляется у правого края; когда он уходит за край экрана снизу, он тут же возникает сверху. Ни один обычный стол не обладает таким свойством, но это вполне осязаемая геометрическая фигура, называемая двумерным тором. В примечаниях я обсуждаю эту фигуру более полно,{8} здесь же стоит подчеркнуть только две её характеристики: подобно бесконечному столу, экран компьютерной игры однороден и не имеет краёв. Границы являются кажущимися: мистер Пакман может пересечь их и при этом остаться в игре.

Математики говорят, что бесконечный стол и экран компьютерной игры — это поверхности постоянной нулевой кривизны. Слово «нулевая» говорит о том, что и зеркальный стол, и зеркальный компьютерный экран отразят вас без искажений, а слово «постоянная», как и прежде, означает, что ваше отражение будет выглядеть одинаково вне зависимости от того, напротив какой точки поверхности вы встанете. Разница между этими двумя формами проявляется только в глобальной перспективе. Если вы отправитесь в поездку по бесконечному столу, сохраняя постоянное направление, вы не вернётесь домой никогда; на экране компьютерной игры вы можете объехать всю фигуру и вернуться в пункт отправления, ни разу не повернув руль.

Наконец, ломтик картофельных чипсов «Принглс», если его бесконечно продолжить во все стороны (это несколько труднее изобразить), даёт представление об ещё одной однородной фигуре, про которую математики говорят, что она имеет постоянную отрицательную кривизну. Это означает, что ваше отражение в любой точке зеркальной чипсины будет выглядеть сжатым внутрь.

К счастью, эти описания двумерных однородных фигур без усилий расширяются на интересующий нас случай трёхмерного космического пространства. Положительная, отрицательная или нулевая кривизна — однородное раздувание, однородное сжатие или отсутствие искажений — с тем же успехом характеризуют трёхмерные однородные формы. В действительности нам повезло дважды, поскольку хотя трёхмерные формы очень трудно изобразить (представляя себе форму, наше сознание помещает её в некое окружение — аэроплан в пространстве, планета в пространстве, — но когда дело доходит до пространства, нет никакого окружения, в котором содержалось бы само пространство), трёхмерные однородные формы являются столь точными математическими аналогами своих двумерных родственников, что мы ничего не потеряем, когда станем делать то же, что делает большинство физиков, — мысленно использовать двумерные примеры.

  • Читать дальше
  • 1
  • ...
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: