Шрифт:
Волновая механика позволяет одновременно решить волновое уравнение, определив волновую функцию, и ввести плотность вероятности и плотность тока вероятности, которые должны удовлетворять «уравнению непрерывности» или «уравнению сохранения». Это случай уравнения КГ, где определена плотность тока, удовлетворяющая теории относительности. Однако главная проблема уравнения Клейна — Гордона возникает, когда необходимо вычислить плотность вероятности. В уравнении Шрёдингера плотность вероятности, согласно интерпретации Борна, задана квадратом волновой функции; таким образом, она определена как величина, имеющая положительное значение. Зато из уравнения КГ следует, что плотность вероятности может быть не только положительной, но и отрицательной, и нулевой. Это вытекает из его частной формулировки, включающей производную второго порядка по времени, и означает, что для того чтобы узнать волновую функцию в определенный момент, нужно знать не только волновую функцию в предыдущий момент, но и ее производную. Другими словами, из того, что уравнение КГ является уравнением второго порядка по времени, вытекает: для полного определения волновой функции должны быть известны два независимых условия. Следствием данного результата является то, что плотность вероятности может быть отрицательной. Но как объяснить, что вероятность обнаружения частицы в определенном месте может быть отрицательной? Для Дирака этот результат был отражением непоследовательности уравнения Клейна — Гордона, которое не удовлетворяло основным свойствам квантовой теории, сформулированным в его теории преобразований.
К концу 1926 года большинство физиков осознали слабые места уравнения КГ. Было не только трудно допустить существование отрицательной плотности вероятности, но также казалось невозможным включить в уравнение новое квантовое понятие — спин. Многие физики изучали проблему и пытались найти «улучшенную» версию уравнения КГ, введя в него эффекты спина в рамках теории Шрёдингера. Дирак поставил вопрос оригинальнее: исходя из основополагающих принципов, он разработал уравнение, в котором спин появлялся как естественное следствие теории относительности.
Стоит заметить, что уравнение Клейна — Гордона было пересмотрено в 1934 году Паули и Вайскопфом, которые переформулировали плотность вероятности в плотность заряда. Так сегодня уравнение Клейна — Гордона известно как «релятивистское квантовое уравнение для частицы с нулевым спином» и используется для описания поведения частиц без спина, таких как пионы (или пи-мезоны). Они имеют три разных состояния электрического заряда — положительное, отрицательное и нейтральное, — отражая значение, которое может принимать плотность заряда, определяемая уравнением.
СПИН ЭЛЕКТРОНА
Понятие спина было введено вследствие некоторых экспериментов, результаты которых не смогли объяснить существующие теории. Речь идет об эффекте Зеемана и опыте Штерна — Герлаха. В обоих случаях надо было ввести новое квантовое число, чтобы описать распределение электронов в атоме. В 1924 году Паули ввел четыре квантовых числа для описания состояний электрона: первые три определяли пространственное положение (n, l, ml,), а четвертое, обозначенное ms, физический смысл которого был еще не известен, могло принимать только два значения. В следующем году Паули представил свой знаменитый принцип запрета, позволявший понять, как распределяются электроны в разных атомах (расположение электронов).
Спустя несколько месяцев два молодых студента Лейденского университета (Нидерланды), Сэмюэл А. Гаудсмит (1902-1978) и Джордж Ю. Уленбек (1900-1988), присвоили новое квантовое число кинетическому моменту, соответствующему круговому движению электрона вокруг самого себя. Объяснение Гаудсмита и Уленбека было поставлено под сомнение из-за вытекавших из него последствий. Прежде всего, электрон должен был иметь конечный размер, чтобы вращение вокруг собственной оси имело смысл; то есть электрон не мог быть элементарной или точечной частицей. Впрочем, расчеты Лоренца показывали: угловая скорость на поверхности электрона должна значительно превосходить скорость света, что противоречило теории относительности. Эти результаты выглядели нелепо. Гаудсмит и Уленбек попросили своего руководителя Эренфеста не публиковать работу. И ответ последнего вошел в историю квантовой теории:
«Вашу статью я давно отослал. Не беспокойтесь, вы достаточно молоды и можете себе позволить некоторые глупости».
Спин является основным свойством, позволяющим понять поведение субатомного мира. У него нет эквивалента в классическом мире, это чисто квантовое явление. Следовательно, его нельзя интерпретировать как вращение электрона вокруг собственной оси в пространственных координатах; спин не зависит от уровней пространственной свободы; другими словами, он не зависит ни от координат, ни от моментов.
Уравнение Шрёдингера определяется исключительно в пространстве координат. Таким образом, волновая функция зависит только от пространственных и временных координат: (,t). Спин должен быть добавлен как новый уровень свободы. Он является единственным способом объяснить аномальный эффект Зеемана (расщепление спектральных линий) и результаты опыта Штерна — Герлаха, то есть разделение пучка на две симметричные части (см. рисунок).
К середине 1926 года большинство физиков считали, что наличие спина является прямым следствием приложения теории относительности к квантовому миру. Это объясняет, почему в уравнении Шрёдингера (которое соответствует классической теории) не содержится никакой информации о спине. Проблема, однако, была двоякой.
1. Как ввести спин в уравнение Шрёдингера?
2. Если существование спина вытекает из теории относительности, почему его нет в уравнении КГ, которое соответствует релятивистскому выражению энергии?
В мае 1927 года Паули нашел ответ на первый вопрос, развив свою теорию спина и включив его в уравнение Шрёдингера. Так родилось •«уравнение Паули». Но для того чтобы ответить на второй вопрос, надо было дождаться появления квантового релятивистского уравнения электрона — уравнения Дирака.