Шрифт:
Этот красивый симметричный узор «нарисовали» рентгеновские лучи, продифрагировавшие на кристаллике льда.
И все же природа рентгеновских лучей, несмотря на их необычные свойства, та же, что и у видимого света. Они не несут заряда, не отклоняются ни в электростатическом, ни в магнитном поле, и все их отличия определяются и объясняются чрезвычайно малыми длинами волн, лежащими в пределах от 0,049 до 0,00001 микрона. Эти волны настолько коротки, что явление дифракции не удается наблюдать даже с помощью самых лучших дифракционных решеток, имеющих до 25 тысяч штрихов на сантиметре.
Рентгеновские лучи дифрагируют только на кристаллических структурах. В наше время эта их способность используется для изучения строения и внутренних свойств самых различных веществ.
Спектр электромагнитных колебаний
Теперь мы уже многое знаем о свете и можем подвести некоторые итоги, для того чтобы яснее понять, каково же место световых волн в общем спектре электромагнитных колебаний.
Начнем с самых длинных волн (самых медленных колебаний) и постепенно перейдем ко все более коротким волнам.
Но прежде читателю рекомендуется запомнить название и смысл одной чрезвычайно часто употребляемой единицы. Она называется герц по имени физика Генриха Герца. Эта единица применяется для измерения частоты колебаний. Так, 1 герц соответствует одному колебанию в секунду или одному периоду в секунду. 1000 герц, или 1 килогерц, соответствует 1000 периодов в секунду. 1 000 000 герц = 1000 килогерц = 1 мегагерцу = 1 000 000 периодов в секунду.
Одним из самых длинноволновых является переменный ток, вырабатываемый электростанциями. В СССР и других странах Европы его частота равна 50 герцам [5] . Длина волны промышленного переменного тока равна 6000 километров. В настоящее время самые протяженные линии электропередач не превысили еще 2000 километров, и, следовательно, на всей такой линии уложится не более 1/3 волны.
5
В США и других странах американского континента частота в сети переменного тока равна 60 герцам.
Более высокие частоты содержатся в телефонных сигналах и в сигналах вещательных передач, передаваемых по проводам. Они занимают довольно широкий диапазон: от 20–60 герц до 20·103 герц. Этот диапазон называется диапазоном звуковых частот, так как наше ухо воспринимает звуковые колебания (но не электромагнитные, о которых идет речь!) с теми же самыми частотами. Длина волны в этом диапазоне находится в пределах от 15 тысяч до 150 километров. Для сравнения можно сказать, что звуковые колебания с теми же частотами, распространяясь в воздухе при нормальном атмосферном давлении, вызовут волны (звуковые, а не электромагнитные!) длиной от 17 метров до 1,7 сантиметра. Это и понятно — ведь скорость распространения электромагнитных колебаний примерно равна 300 тысячам километров в секунду, а скорость звуковых колебаний — 340 метрам в секунду. За диапазоном звуковых следует диапазон инфранизких радиочастот. Такое название он получил по аналогии с лучами света, более длинноволновыми, чем видимые. Диапазон этот занимает полосу частот от 20·103 до 100·103 герц. Длины волн в пределах от 150 до 3 километров.
Инфранизкие частоты широко используются техникой. На них работают промышленные установки для нагрева и плавки металлов токами высокой частоты и даже некоторые системы дальней радионавигации и радиосвязи.
Затем идут волны, которые мы привыкли считать радиоволнами: длинные — от 3000 до 600 метров; средние — от 600 до 150 метров; промежуточные— от 150 до 75 метров и короткие — от 75 до 10 метров. Низкочастотная граница длинных волн соответствует 100·103 герц, а высокочастотная граница коротких волн — 30·106 герц. Весь этот диапазон используется главным образом для радиовещания и различных видов радиосвязи на дальних расстояниях. В этом же диапазоне работают и некоторые медицинские установки.
Радиоспектр идет и дальше. Но для радиоволн с длиной порядка единиц метров и короче линия горизонта является почти непреодолимой преградой. Поэтому телевидение, радиовещание и радиосвязь на таких волнах ведутся только в пределах прямой видимости. Для того чтобы увеличивать зону прямой видимости, телевизионные антенны устанавливаются на очень высоких башнях. Длины волн метрового диапазона от 10 до 1 метра, а частоты — от 3·107 до 3·108 герц.
За метровыми следуют дециметровые волны длиной от 1 метра до 10 сантиметров; граничные частоты этого диапазона равны 3·108 и 3·109 герц. В этом диапазоне волн работают самые разнообразные радиотехнические устройства и, в частности, радиотелескопы, о которых дальше будет рассказано. Радиоволны, длина которых измеряется дециметрами, и еще более короткие волны имеют одну очень интересную особенность. Они могут распространяться не только в пустоте (в воздухе), но и в трубах, в так называемых волноводах.
Сантиметровые волны имеют длину от 10 до 1 сантиметра (частоты 3 ·109 до 3·1010 герц). Этот диапазон принципиально не отличается от предыдущего. В нем, в частности, работают метеорологические радиолокаторы.
Граничные частоты диапазона миллиметровых радиоволн соответствуют 3·1010 и 3·1011 герц. Миллиметровые волны являются в настоящее время самыми короткими из тех, которые умеет генерировать радиотехника. В наши дни еще только приступили к их практическому освоению. Пока же они используются только для экспериментальных целей.
За диапазоном радиоволн простирается спектр световых волн.
Самым близким к радиоспектру является инфракрасный. Он ограничен волнами длиной 400 микронов и 760 миллимикронов, что соответствует частотам от 7,5·1011 до 3,87·1014 герц. Получать волны в этом диапазоне можно с помощью некоторых специальных устройств, но наиболее простой способ заключается в нагревании каких-либо тел. Обычные лампы накаливания имеют очень интенсивное излучение в области коротковолнового инфракрасного излучения. Инфракрасные лучи широко используют в науке, технике и быту. С их помощью приготовляют пищу, обогревают помещения; сушат различные виды продукции. В этих лучах удается делать фотографии и с помощью особых приборов видеть ночью.