Шрифт:
Факт светового давления имеет принципиальное значение для науки: он открывает завесу еще над одним очень важным свойством света. Поэтому экспериментальное доказательство правильности теоретических выкладок было бы чрезвычайно существенным вкладом в физику. Но такой эксперимент оказался до крайности сложным и трудоемким — ведь измерять приходилось ничтожные по величине усилия.
Первым, кому удалось провести эти тончайшие измерения, был профессор Московского университета . Н. Лебедев. В 1899 году он измерил давление света на твердые тела, а в 1909 году разрешил еще более трудную задачу — измерение давления света на газы.
Схема установки . Н. Лебедева. Ось с лопастями, нарисованная отдельно, подвешивалась в стеклянном цилиндре. На лопасти направляли свет яркой лампы. Под давлением света ось с лопастями поворачивалась на некоторый угол.
Эти работы принесли Лебедеву мировое признание; многие университеты и научные общества избрали его своим почетным членом.
Результаты исследований подтвердили факт светового давления и точность расчетов Максвелла. Основываясь на этом факте и исследованиях Лебедева, астрономы смогли точно изучать влияние солнечного света на хвосты комет и даже определять массу частиц, образующих хвосты. Не менее интересным и важным для науки явился вывод, сделанный астрономами, о том, что световое давление, возможно, устанавливает естественный предел для размеров звезд. Масса звезды не может превышать некоторой, хотя и громадной, но конечной величины, так как в противном случае световое давление раскаленных внутренних областей звезды взорвет ее изнутри.
Мы помним, что волновая теория победила корпускулярную только после того, как опытным путем были установлены такие факты, как дифракция и интерференция. Эти факты невозможно объяснить с точки зрения корпускулярной теории, зато волновая теория великолепно с ними согласуется. Что же в этом смысле можно сказать о световом давлении? Оно было выведено и исчислено Максвеллом, создавшим свою электромагнитную теорию на основе волновых представлений о природе света, и, следовательно, полностью подтверждает их справедливость. Однако факт светового давления относится к числу тех, которые не противоречат и корпускулярным представлениям. Более того, на основании опытов Лебедева сторонник корпускулярной теории может сделать вывод, что свет имеет массу, и даже определить ее величину!
Мельчайшие из мельчайших
Наука никогда не заняла бы подобающего ей места, если бы с самого зарождения не требовала глубокого осмысления и точного определения даже самых простейших, кажущихся совершенно очевидными понятий. Вот, например, определения [7] белого, прозрачного и черного тел, приемлемые для науки:
Тело, отражающее все лучи света, падающие на него, называется идеально белым.
Тело, пропускающее без поглощения все лучи проходящего сквозь него света, называется идеально прозрачным.
7
Здесь не приводятся определения в строгой научной формулировке.
Тело, целиком поглощающее падающие на него лучи света, называется идеально черным.
В природе не существует ничего идеального. Нет и таких тел, которые полностью отвечали бы приведенным определениям, но зато есть очень много тел, которые довольно близки к ним. Так, некоторые химические соединения отражают до 98 процентов света; не слишком толстые слои стекла или горного хрусталя в широком диапазоне световых волн почти идеально прозрачны; некоторые сорта черного бархата поглощают до 99,7 процента падающего света.
Приведенные определения вряд ли у кого вызовут возражения, хотя бы потому, что они нисколько не противоречат повседневному опыту. Основываясь на этом опыте, мы привыкли считать белым то тело, которое излучает много света, а черным — не излучающее вовсе.
Солнце — ослепительно белое, а отверстие в закопченной печной трубе — ослепительно черное.
На первый взгляд кажется, что наше житейское понимание белого и черного нисколько не отличается от физического. Но на самом деле такое противоречие есть. В обиходе мы не замечаем его потому, что не совсем правильно пользуемся глаголами «отражать» и «излучать». Часто подменяем один из них другим, не видя особой разницы. А она с точки зрения физики имеет принципиальное значение.
И каждому из этих слов физика приписывает совершенно определенное действие.
Отражать — значит отбрасывать назад, вовне, лучи некоторого постороннего источника света, падающие на поверхность тела. При идеальном отражении температура тела не изменяется, не изменяется и запасенная в этом теле тепловая энергия.
Излучать — означает отдавать вовне путем испускания лучей собственную энергию. При излучении температура тела, его запасы тепловой энергии уменьшаются. Для того чтобы излучение не прекращалось, необходимо восполнять эту убыль энергии, а для этого требуются какие-то источники энергии. Например, электрическая батарея для лампочки в карманном фонаре или ядерные реакции на Солнце.
Что же в таком случае означает глагол «поглощать»?
С точки зрения энергетической поглощение следует понимать как действие, обратное излучению.
При поглощении энергия тела увеличивается, а при излучении, наоборот, уменьшается.
Таким образом, идеально белое тело в определенных условиях не поглощает и не излучает энергии. То же можно сказать и об идеально прозрачном теле. Зато идеально черное тело, являясь наилучшим поглотителем лучистой энергии, оказывается в то же самое время и наилучшим ее излучателем.