Шрифт:
В этом основное различие между физиками и математиками. Доказательство Больцмана, имеющее вероятностную природу, не могло быть воспринято математиком адекватно: теоремы, следующие из определенного числа аксиом, не могут быть действительными иногда, они должны быть справедливы для любого случая. По этой причине, несмотря на то что никогда не было найдено четное число, которое нельзя было бы выразить в виде суммы двух простых чисел (знаменитая гипотеза Гольдбаха), математики не считают, что это так. Поэтому доказательство Больцмана, подходящее для физика, не могло быть принято математиком.
Больцман (в центр·) в кругу ученых, среди них Сванте Аррениус (справа от Больцмана), 1897 год.
Герман фон Гельмгольц, физик, уважаемый Больцманом.
Эрнст Мах, физик и философ науки, возглавивший энергетическое течение.
Больцман, вероятно, понимал это, потому что затем привел другой аргумент с более математическим оттенком, но более отдаленный от физической реальности. Он писал: "Если позволить числу молекул стремиться к бесконечности, а времени движения быть очень долгим, то в подавляющем большинстве случаев получится кривая, которая (...) постоянно приближается к оси абсцисс. Теорема Пуанкаре неприменима к этому случаю, как это можно легко заметить".
Больцман утверждал, что теорема Пуанкаре неприменима по той простой причине, что при наличии бесконечного числа молекул число их сочетаний становится бесконечным. Однако у его аргумента была проблема с тем, что, как сегодня известно (и тогда предполагалось с большой долей уверенности), число молекул небесконечно. Далее Больцман делал вывод, что несмотря на то что Цермело прав, утверждая, что движение периодично в математическом смысле, он ошибается, утверждая, что это противоречит его теореме. И добавлял: "Вывод, что нужно изменить механическую точку зрения, неверен. Этот вывод был бы оправдан, если бы сама механическая точка зрения приводила к какому-то выводу, противоречащему опыту".
Ближе к концу статьи Больцман как будто случайно затрагивает очень важный вопрос, ответ на который не получен до сих пор:
"Ответ на вопрос "Почему в настоящем окружающие нас тела находятся в таком невероятном состоянии?" не может быть дан, точно так же нельзя надеяться, что наука ответит на вопрос, почему существуют явления, которые действуют, следуя неким законам".
Больцман завершил статью приложением, в котором вычислил время рекурсии для газа в контейнере, где получался результат, превышающий возраст Вселенной и который он назвал "спасительно высоким".
Но полемика на этом не закончилась. В следующей статье Цермело подчеркивал, что, согласно Больцману, вероятность уменьшения энтропии при заданном начальном состоянии очень высока, что позволяет утверждать: кривая Н (представляющая Я относительно времени) выведена только для максимумов, а это, согласно Цермело, не имеет смысла.
Время, за которое некоторый объем газа вернется к своей начальной конфигурации, относительно просто вычислить. В теореме Пуанкаре утверждалось, что система вернется к своему начальному состоянию максимум после того, как пройдет через все возможные состояния. Значит, для вычисления времени рекурсии нужно было определить количество возможных состояний и время, которое система пребывает в каждом из них; при перемножении этих величин получалось время рекурсии. Но Больцман слегка упростил условия Пуанкаре: вместо того чтобы требовать от системы возвращения точно в исходное состояние, он довольствовался тем, чтобы она вернулась в состояние, кажущееся ему достаточным. Он считал достаточным, если каждая молекула находится в кубе со стороной 10-6 см вокруг начального положения и имеет скорость, близкую на 1 м/с к той, что была у нее в начале. Для определения времени между различными конфигурациями Больцман учитывал число столкновений в секунду: каждый раз, когда две молекулы сталкиваются, система приходит в новое состояние. Зная число молекул, их скорость и свободное пространство, он пришел к выводу, что молекулы сталкиваются 4 · 108 раз в каждую секунду на молекулу, то есть 2 · 1027 столкновений для всего газа. Тогда время, пройденное между состояниями, равнялось бы
1/(2 · 1027) = 5 · 10– 28 c.
В итоге он получил общее число конфигураций, сложив все возможные сочетания скоростей для всех частиц газа и предположив среднюю скорость в 500 м/с, то есть похожую на скорость, которой обладают молекулы воздуха при нормальных условиях. После умножения времени между конфигурациями на общее число возможных состояний он получил число с триллионами цифр. Больцман дал представление о его величине с помощью такого сравнения: "Допустим, у каждой звезды, видимой с помощью самого лучшего телескопа, имеется столько же планет, сколько и у Солнца, на каждой из них живет столько же людей, сколько и на Земле, и жизнь каждого из этих людей длится триллион лет; тогда общее число секунд, которое они все проживут, будет иметь менее 50 цифр".
В ответе Больцман исходил из комментария своей предыдущей статьи, он предполагал, что рост энтропии можно объяснить на основе начальных условий, где энтропия очень низка, и что речь идет о принципиально ином образе Вселенной, чем тот, что имеется на сегодняшний день (проблемы, происходящие из этой идеи, будут подробно рассмотрены в следующей главе). Больцман начал так: "Второе начало термодинамики может быть доказано на основе механической теории, если предположить, что Вселенная в современном состоянии или по крайней мере та ее часть, что нас окружает, начала эволюционировать на основе невероятного состояния, и она все еще находится в относительно невероятном состоянии".
Больцман наконец-то допустил, что была еще одна, дополнительная гипотеза в его доказательстве второго начала. Так же как в своих первых статьях он утверждал, что доказательство выводится из принципов механики, соединенных с теорией вероятностей, на этот раз он добавил к этим двум предположениям еще одно, очень значимое: Вселенная должна находиться в невероятном состоянии. Это было равносильно тому, чтобы выбрать начальные условия с временным смещением, и, следовательно, вместо того чтобы решать проблему оси времени (почему время идет от прошлого к будущему?), он перенес ее в другую сферу. Если раньше вопрос заключался в том, почему энтропия всегда увеличивается, то сейчас он имел вид: почему состояние Вселенной такое невероятное?