Шрифт:
(8.2.2)
Когда мы вычисляем новые компоненты g' мы получаем произведение двух таких производных
g'
(x')
=
g
(x'+)
+
x'
+
x'
.
(8.2.3)
Если мы оставляем только члены нулевого порядка и первого порядка малости по , то получаем
g'
(x')
=
g
(x')
+
g
x'
+
g
x'
+
g
x'
.
(8.2.4)
Новые компоненты g' равны старым компонентам g плюс некоторые члены порядка Когда теперь мы спрашиваем, какие функции g допускаются, если настаиваем, чтобы их форма осталась инвариантной, мы видим, что мы приходим к той же самой задаче, которую решили в лекции 6. Математическая задача является той же самой как и тогда, когда мы пытались найти лагранжиан, который приводил к сохраняющемуся тензору энергии-импульса.
Таким образом, имеется более чем одна точка зрения, которая приводит к одному и тому же уравнению и которая имеет то же самое физическое содержание. Мы обнаружили, что преобразование, которое возникло тогда, когда мы искали лагранжиан для гравитации, появляется также в решении чисто геометрической задачи. Мы предполагаем, следовательно, что некоторые физические и геометрически звучащие критерии эквивалентны; самосогласованность предыдущего подхода, к которому мы пришли, исходя из требования равной нулю дивергенции, должна быть эквивалентна тому условию, которое мы накладываем сейчас. В чем состоит физическая значимость инвариантов g?
Уравнения движения могут быть выведены из вариационного принципа
ds
=
g
(x)
dx
dx
1/2
=
0.
(8.2.5)
Эти вычисления могут быть проведены до конца путём введения параметра u так что квадратный корень под интегралом становится более точно определённой величиной
du
g
(x)
dx
du
dx
du
1/2
.
(8.2.6)
Когда решение вариационной задачи проведено до конца, получается следующее уравнение геодезических
d^2x
ds^2
=-
dx
ds
dx
ds
,
(8.2.7)
где
=
g
[,]
.
Так как вид этого уравнения остаются неизменным при изменении метрического тензора при произвольном преобразовании, то эти уравнения должны быть инвариантами метрики g, которая содержит в себе физику данной проблемы.
8.3. О предположении, что пространство есть в точности плоское
Давайте попробуем обсудить, что мы узнали при выяснении того, что различные подходы, которые мы использовали, приводят к одним и тем же результатам. Точка зрения, которой мы до сих пор придерживались, состоит в том, что пространство описывается как пространство специальной теории относительности, которое для удобства мы будем называть галилеевым. В таком галилеевом пространстве могут существовать гравитационные поля h, которые приводят к тому, что линейки меняются в своей длине и скорости хода часов увеличиваются или уменьшаются. Так что говоря о результатах экспериментов мы вынуждены делать различия между масштабами действительных измерений, физическими масштабами и масштабами, с использованием которых написана эта теория, т.е. галилеевыми масштабами.
Теперь положение состоит в том, что именно физические координаты должны всегда воспроизводить одни и те же результаты. Может быть удобным для того, чтобы написать теорию в начале, предположить, что измерения делаются в пространстве, которое в принципе галилеево, но после того, как мы получим предсказываемые реальные эффекты, мы видим, что галилеево пространство не имеет смысла.
Это приводит к тому, что для нас не имеет смысла заявлять, что выбор координат, который сделал кто-либо другой, является сумасшедшим и бестолковым просто потому, что этот выбор не выглядит для нас галилеевым. Если он настаивает на трактовке такого выбора как галилеева и приписывает кривизну полям, он также абсолютно оправдывается, и это наше пространство выглядит бестолковым для него. Для любого физического результата получается один и тот же ответ независимо от того, какое исходное нанесение меток задано для положений объектов. Следовательно, мы видим, что это может быть философское улучшение, если мы могли бы сформулировать нашу теорию от начала таким способом, что нет галилеева пространства, которое входит в точное определение физики; мы всегда имеем дело с физическим пространством действительных измерений.
Мы можем снова порассуждать о человеке, который делает измерения с помощью физической линейки на раскалённой пластине. Линейка очевидно меняет длину при её передвижении от более горячих областей к более холодным. Но всё это имеет смысл только потому, что мы знаем нечто, что может измерять расстояния без такой зависимости от температуры, а именно свет. Если мы с помощью световых измерений можем вписать ”истинно евклидову” координатную систему на пластину, человек на раскалённой пластине мог бы оценить для нас величину температурного поля, т.е. поля, которое могло бы описывать, как линейка меняет свою длину при передвижении её по раскалённой пластине. Если, тем не менее, мы обманываем его и вписываем искажённую систему координат на пластине, но продолжаем говорить ему, что система координат евклидова, он даст описание другого температурного поля. Но нет способа, с помощью которого мы могли бы одурачить его, вписывая произвольные координатные системы на пластине, так что мы будем всегда менять результаты физических измерений, которые он проделывает полностью самостоятельно. Пока он использует только длины линеек в приведённых расстояниях, он будет всегда приходить к одним и тем же ответам независимо от того, к каким бы сумасшедшим температурным полям он мог бы придти, используя координаты, которые мы могли бы ему определить.