Шрифт:
Но то практики-селекционеры, им важен результат, а не научное объяснение метода. Дарвин же был ученым и потому стремился найти подходящее объяснение всему непонятному в биологии.
Для объяснения механизма наследственности Дарвин придумал геммулы, некие гипотетические частицы, обеспечивающие наследование признаков. Эти самые геммулы по мнению ученого образовывались во всех клетках организма, а затем поступали в кровь и с током крови доставлялись в половые железы. Каждая «новорожденная» половая клетка получала полный набор геммул, то есть наследственную информацию от всех клеток организма.
Логично?
Вполне.
И то, как наследуются приобретенные признаки, эта гипотеза тоже объясняла. Изменившиеся клетки (новый признак – это же изменения клеток) вырабатывают новые геммулы, отличающиеся от тех, которые они вырабатывали прежде…
Можно предположить, что во время разработки этой гипотезы Дарвин был сильно занят (он вообще никогда без дела не сидел, был трудягой из трудяг) и потому не удосужился получить ее практическое подтверждение. Придумал и отдал научному сообществу – берите, пользуйтесь, развивайте, опровергайте…
Гипотезу геммул опроверг двоюродный брат Чарльза Дарвина Фрэнсис Гальтон. Имя Гальтона в наше время мало кому известно, а ведь он внес в науку значительный вклад, причем в различных отраслях.
Гальтон основал дифференциальную психологию, науку о психологических различиях у представителей разных социальных групп, и психометрию – теорию и методику психологических измерений.
Гальтон открыл первую в мире антропометрическую лабораторию.
Гальтон обосновал возможность использования отпечатков пальцев в криминалистике. Метод опознания по отпечаткам пальцев был открыт не Гальтоном, но именно он доказал, что у двух людей не может быть одинаковых отпечатков пальцев.
Все слышали слово «антициклон», обозначающее область повышенного атмосферного давления? Феномен антициклона открыл Гальтон.
Но вернемся к нашим геммулам. Гальтон переливал кровь от кроликов с темной окраской шерсти их светлошерстным собратьям, но не получил ожидаемого потемнения шерсти у потомства «светлых» кроликов. А ведь, по логике, геммулы темной окраски, содержащиеся (якобы содержащиеся) в перелитой крови, непременно должны были попасть в половые железы светлошерстных кроликов и проявить себя в их потомстве. Если же этого не произошло, то, значит, никаких геммул не существует.
К слову заметим, что «похороненная» Гальтоном гипотеза геммул «воскресла» в двадцатые годы ХХ века в Советском Союзе. Отдельные биологи-новаторы намеревались исправлять «отсталое» мышление путем переливания крови, взятой у сознательных строителей коммунизма. Но развития эта идея не получила.
После геммул появился панген – материальный носитель наследственности, находящийся в клетке. Затем приставку «пан-» отбросили, и получился «ген».
Ген, просто ген.
Его Величество Ген.
Ген обладает набором свойств, которые мы с вами сейчас рассмотрим.
Главным свойством гена является его дискретность или, если можно так выразиться, «отдельность».
Каждый ген существует сам по себе. Гены не могут смешиваться-соединяться друг с другом и в результате этого образовывать новый ген. Гены могут подавлять своих конкурентов, но не могут с ними соединяться.
Дискретность – очень важное свойство. Это главное свойство гена, которое делает каждый ген геном – структурной и функциональной ЕДИНИЦЕЙ наследственности.
Давайте представим, что было бы, если бы гены не обладали дискретностью…
Ничего не было бы! Систематическое размножение организмов при отсутствии дискретности у генов невозможно, а, стало быть, невозможна и сама жизнь в глобальном смысле этого слова. Получит дочерняя клетка от материнской вместо четкого набора генов некую условную «генную кашу» и погибнет, не успев дать потомства.
Из дискретности логически вытекает другое свойство генов – их стабильность. Гены способны функционировать, не изменяя собственной структуры. Короче говоря, каким ген был, таким он и остается после считывания с него наследственной информации.
В то же время стабильность генов сочетается с их лабильностью – способностью изменяться.
«Что за чушь! – возмутятся сейчас некоторые читатели. – Как ген может одновременно быть и стабильным и лабильным?! Это же взаимоисключающие понятия!!!»
Да, взаимоисключающие. Но тем не менее гену присущи и стабильность и лабильность. Сам по себе, как структурная единица молекулы ДНК, ген стабилен. В процессе исполнения своих функций ген никак не изменяется. Изменяется он при копировании ДНК или же при повреждении ДНК. Мы еще будем обсуждать эту тему, но пока что важно усвоить следующее – гены способны изменяться в результате каких-то «глобальных» (с точки зрения генов) процессов, происходящих со всей молекулой ДНК. Но сам по себе ген стабилен.