Шрифт:
Одни и те же гены, то есть гены, отвечающие за развитие одного признака, могут существовать в различных формах, которые называются аллелями (не путайте с аллеями). Обычно аллельных генов два. Аллельные гены могут подавлять друг друга. Так, например, ген карих глаз подавляет ген голубых глаз. Если у отца глаза карие, а у матери – голубые, то у ребенка, скорее всего, будут карие глаза. В свое время мы рассмотрим принципы наследования признаков более подробно. Пока что надо запомнить, что одни и те же гены могут существовать в различных формах – аллелях и что аллельные гены могут друг друга подавлять.
Гены обладают экспрессивностью. Это свойство можно назвать силой гена. Экспрессивность определяет степень выраженности гена в кодируемом им признаке. Чем ген экспрессивнее, тем он выраженнее, тем сильнее он подавляет своего аллельного собрата.
Возникает закономерный вопрос: а откуда берутся эти аллельные собратья?
От родителей. От кого же еще?
Мы получаем по комплекту генов от отца и матери, то есть по каждому кодируемому признаку мы имеем парный набор генов. Те гены, которые являются более экспрессивными, подавляют в парах-аллелях менее экспрессивные гены. Конкуренция в рамках пары генов приводит к тому, что одни признаки наследуются от отца, а другие – от матери. Но никогда в наследовании не будет половинчатости! Невозможно унаследовать один признак наполовину от матери и наполовину от отца, потому что гены не смешиваются друг с другом. Даже в парах, отвечающих за один и тот же признак, не смешиваются. Подавлять друг друга гены могут, а смешиваться – нет.
Гены специфичны – каждый ген кодирует синтез одного конкретного белка, то есть отвечает за один определенный признак. Пора нам вспомнить классическую концепцию генетики, которая гласит: «один ген – один белок – один признак». Образно говоря, среди генов не принято помогать друг другу, такие вот они индивидуалисты. Каждому – свое, и каждый за себя.
Один ген – один белок – один признак! Но в то же время некоторые гены обладают множественным действием, способностью влиять на несколько признаков. Такая «многогранность» называется плейотропией.
Плейотропия может быть первичной или вторичной. При первичной плейотропии один ген на самом деле влияет на несколько признаков. Например, у человека ген, определяющий рыжую окраску волос, одновременно обуславливает более светлую окраску кожи и наличие на ней веснушек. При вторичной плейотропии ген, по сути дела, влияет на один признак, от которого напрямую зависят несколько других признаков. Классическим примером вторичной плейотропии является нарушение синтеза белка крови гемоглобина, приводящее к развитию заболевания, называемого серповидноклеточной анемией. Ген вызывает нарушение синтеза белка, а дальше «нарушенный» гемоглобин приводит к вторичным проявлениям – невосприимчивости к малярии, анемии, увеличению печени и селезенки, поражению сердца и головного мозга.
Но как же быть с концепцией: «один ген – один белок – один признак»? Получается, что плейотропия ей противоречит…
Нет, не противоречит. Просто один белок, образующийся в результате считывания информации с гена, может принимать участие в нескольких процессах, происходящих в организме. Давайте скажем так: «один ген – один белок (то есть по факту – одна РНК)», и эта концепция будет верной для любого, без исключения, гена.
А будет ли? Для любого, без исключения?
Приготовьтесь, сейчас начнется самое интересное…
Если концепция верна, то как можно объяснить вот такой парадокс – мы с вами имеем около двадцати тысяч генов, но при этом в нашем организме синтезируется более ста тысяч белков.
Двадцать тысяч генов и сто тысяч белков! По пять белков на один ген!
По пять разных белков с одного и того же кода?
Как такое вообще возможно? Это все равно, что отлить пять разных фигур, используя одну и ту же форму для литья.
Можно понять, что один белок участвует в различных процессах в организме и, соответственно, влияет на несколько признаков.
Можно понять, что один признак оказывает воздействие на несколько других признаков.
Но как может быть нарушено правило «один ген – один белок (РНК)»?
Такое даже представить не получается. Ген – это код, определенный набор четырех видов азотистых оснований. Код задает аминокислотную последовательность (состав и структуру) белковой молекулы. Как можно по одному и тому же коду «построить» две разные белковые молекулы? Или не две, а пять! Это все равно что построить несколько разных зданий по одному и тому же проекту.
Такого просто не может быть!
Один код – одно вещество.
Но при этом двадцать тысяч генов отвечают за синтез более ста тысяч белков.
Где логика?
Логика в явлении, которое называется альтернативным сплайсингом.
Звучное название, интересный, можно сказать, уникальный процесс.
Сплайсинг представляет собой процесс вырезания определенных нуклеотидных последовательностей (проще говоря – сегментов) из молекулы РНК в ходе процесса ее созревания. Да, не удивляйтесь, РНК, особенно матричные, «созревают» подобно винограду или яблокам.