Шрифт:
Анализируя результаты исследований В. М. Дильмана [4] относительно возрастного загрубления чувствительности функций гипоталамуса к периферическим регуляторным сигналам отрицательной обратной связи (периферическим гормонам и ключевым метаболитам), сопровождаемым ростом базального уровня одного из гормонов стресса – кортизола, я предположил, что кроме гормональных и метаболических сигналов, определяющих этот феномен существует более мощный и значимый регулятор активности гипоталамуса – периферическая часть вегетативной нервной системы (ВНС) – эволюционно, система регуляции метаболизма № 1, которая обеспечивает быстрое приспособление организма к изменяющимся условиям как окружающей среды, так и внутренней среды организма. Меня убедили в этом результаты экспериментов W. B. Cannon [5] по удалению у животных симпатических ганглиев ВНС, обеспечивающих нервную связь стволовых структур мозга с периферией.
Такая операция не приводила к сколь-нибудь значимым нарушениям нормальной жизнедеятельности животных в покое и при постоянных условиях окружающей среды. Однако, такие животные утрачивали возможность быстро приспосабливаться и умирали от незначительных стрессовых воздействий. Поведение оперированных животных с удалённой периферической симпатической нервной системой напомнило мне поведение людей преклонного возраста. Это сходство выражалось в низком пороге стрессового ответа на, казалось бы, самые незначительные как внешние, так и внутренние воздействия, проявляющиеся у человека в неадекватно сильных и необоснованных переживаниях, страхах и волнениях.
Это укрепило меня в сознании, что я нахожусь на верном пути. Я заинтересовался тонким устройством ВНС и особенностями строения нейронов этой системы регуляции метаболизма, выискивая слабые звенья, которые могли сделать её наиболее уязвимой составляющей механизма старения организма. Успех поиска в значительной степени предопределило моё «биоэнергетическое» прошлое в науке [6]. С тех пор, все значимые события старения я рассматривал через призму биоэнергетики.
Такие слабые звенья достаточно быстро обнаружились – невероятно протяжённые отростки псевдоуниполярных нейронов, у которых единственный аксон выходит из тела клетки, разделяясь на две ветви: длинную по направлению к органу чувств и короткую по направлению к центральной нервной системе, равно как и медленные и энергозатратные процессы аксонального транспорта на большие расстояния в десятки сантиметров, определяющего медленный процесс их регенерации.
Объём цитоплазмы, находящейся в протяжённых отростках таких нейронов в сотни раз превышает объём цитоплазмы в теле нейрона, в котором локализуется ядро и аппарат Гольджи, снабжающий отростки всеми необходимыми «строительными материалами» для их роста и регенерации за счёт медленного аксонального везикулярного транспорта, скорость которого значительно меньше, чем скорость кровотока.
Скорость везикулярного транспорта в аксоне достигает 20–50 см/сутки, а, скорость кровотока находится в диапазоне от 0,03 см/сек в капиллярах до 40 см/сек в аорте. Таким образом, скорость везикулярного аксонального транспорта митохондрий и ферментов, накапливаемых в аппарате Гольджи, меньше скорости транспорта питательных веществ кровеносной системой в 50–70 000 раз. Это различие и предопределяет лимитирующую стадию процесса регенерации повреждённых тем или иным образом аксонов, составляющую от 2 до 5 мм в сутки. Я пришёл к выводу, что именно энергетика этих уникальных нейронов может быть лимитирующим фактором их эффективной работы и регенерации их отростков.
А поскольку энергетика нейрона основана на окислительном фосфорилировании, я пришёл к предварительному выводу что исходным лимитирующим фактором работы этих уникальных нейронов может быть только кислород. В дальнейшем выяснилось, что наиболее слабым местом этих нейронов являются самые отдалённые от ядра клетки и от аппарата Гольджи терминальные участки аксонов, на которых локализуются рецепторы и которые способны к регенерации, после физиологической дегенерации.
1.1. Этиология старения
Смерть организма является неизбежным итогом болезни старения. При оценке динамики старения важны два показателя – показатель средней и показатель максимальной продолжительности жизни.
Занимаясь поиском этапов патогенеза, лимитирующих продолжительную и здоровую жизнь, я пришёл к выводу что показатель максимальной или видовой продолжительности жизни связан с физиологическим старением (senescence) и зависит от единственного уникального внутреннего патогенного фактора – дефицита кислорода в органах и тканях и определяется удельными скоростями (на единицу массы тела в единицу времени) образования носителей свободной энергии: аденозинтри- фосфорной кислоты (АТФ), восстановленных форм никотинамид-аденин динуклеотидов (НАДН, НАДФН), восстановленной формы флавин-аденин-динуклеотида (ФАД) и ацетил-коэнзима А (ацетил-КоА). [1]
1
Cвободная энергия или энергия Гиббса-Гельмгольца – часть внутренней энергии молекул которая в процессе реакций может быть превращена в работу.
Показатель максимальной продолжительности жизни на протяжении веков не изменяется и потому является видовым признаком. При этом парциальное давление кислорода в разных органах и тканях существенно различается, в связи с чем уровни гипоксии, нормоксии и гипероксии для каждого органа и каждой ткани уникальны [7].
На ограничение показателя максимальной продолжительности жизни для видов теплокровных животных впервые обратил внимание Макс Рубнер, исследуя энергетические характеристики животных в условиях покоя. Подробно об этом во второй части обзора.
Удельные скорости синтеза носителей энергии в свою очередь определяются не только парциальным давлением кислорода в органах и тканях, но и удельным содержанием в клетках митохондрий, которые катализируют основной процесс синтеза носителей свободной энергии – окислительное фосфорилирование.
В ряде клеток (стволовые, опухолевые) и тканей (ткани зародыша, плода и «камбиальные» ткани ниш стволовых клеток), в которых значительный вклад в производство носителей свободной энергии дают аэробный гликолиз и пентозофосфатный цикл, количество ферментов этих метаболических путей, присутствующих в клетках также определяет удельные скорости синтеза носителей свободной энергии.