Шрифт:
Настолько же обескураживающий ответ дал японец на японской выставке электронной промышленности в Москве, когда его спросили, как он думает, на сколько лет мы от них отстали в этой области. – Навсегда, – сказал он. Спрашивающий-то имел в виду всего лишь узнать, на уровне какой их давности мы находимся, ну, или, сколько лет нам потребуется для достижения их современного уровня. А он понял вопрос так, когда мы их догоним. В принципе, в его понимании вопрос был более существенным.
Забавные истории не обязательно касались каких-то дальних стран. Например, один сотрудник нашего завода поехал не далее как в Волгоград, осваивать технологию вакуумного заполнения жидкокристаллических индикаторов. Оно делается так. Индикатор без жидкого кристалла, для которого оставлена тонкая щель, помещается под вакуумных стеклянный колпак совместно с блюдечком с жидким кристаллом. Воздух откачивается, и индикатор автомат опускает краем в блюдечко. Когда под колпак впускают воздух, атмосферное давление загоняет жидкий кристалл в индикатор на предназначенное ему место. Освоив технологию, сотрудник привёз с собой одну такую установку с вакуумным колпаком и насосом. И стал обучать всех на ней работать. Через некоторое время для растущего производства потребовалось изготовить ещё парочку таких установок. Тут обратили внимание на то, что стеклянный колпак имеет хитрую форму. Не просто колпак, а с тремя выступами сверху, вроде закруглённых рогов. Да ещё нижний край у него в форме не окружности, а прямоугольника со скруглёнными углами. Нельзя ли обойтись без всего этого, чтобы проще делать колпак? Проконсультировались с тем сотрудником, как единственным специалистом, и он категорически настаивал, что именно такая форма совершенно необходима, иначе работать не будет. Всё же спросили и волгоградцев. Они долго смеялись и объяснили, что они, вообще-то, выпускают кинескопы. И что один списанный кинескоп использовали как колпак. На вакууме форма колпака практически не сказывается 27 .
27
Замечу в скобках, если бы речь шла о сверхвысоковакуумной установке, форма бы сказывалась, только наоборот, чем думал тот педант. В колпаке сложной формы было бы больше остаточных газов на стенках, и он бы дольше откачивался.
Но была и про японцев аналогичная история. Они купили у американцев насос «на пробу», а на самом деле с целью скопировать и наладить производство. А там в цилиндре, во внутренней стенке, была небольшая каверна. Скорее всего, при отливке в металле был пузырёк. На производительность насоса маленькая каверна практически не влияла. Но осторожные японцы (помните историю Умнова про бритвы и сетки?) решили, что лучше каверну воспроизвести. Всё же, не будучи столь тупо суеверны, как тот наш педант, они не стали каким-то специальным инструментом выгрызать каверну на внутренней поверхности цилиндра, а сверлили снаружи отверстие и заглушали винтом, оставляя немного пустого места. Решили, что уж форма каверны не может играть роли. Американцы смеялись над этим решением рабски следовать оригиналу. А напрасно. Японцы, действительно, через две недели начали производство, а если бы стали испытывать пробный экземпляр насоса с каверной и сравнивать с насосом без каверны, потеряли бы ещё столько же времени. А время начала выпуска дороже лишней небольшой технологической операции. Потом можно всё выяснить по ходу дела, а сперва лучше так.
С этим копированием была история, подтверждающая невысокое мнение немцев о нашей способности к нему. Кажется, отец рассказал. Он был конструктор. У них купили металлообрабатывающий станок и пытались скопировать. Кажется, это был просто токарный станок, не с цифровым программным управлением, но с необычайно высокой точностью обработки изготавливаемых деталей. Скопировали его от и до, даже проанализировали материалы, из которых были изготовлены те или иные его узлы, и подобрали аналогичные советские сплавы. Изготовили. Работает, но нужной точности не даёт. Очень долго с ним возились. Ну всё в точности так, как у оригинала, и вот тебе. Через очень большое время выяснилось, что дело было «всего лишь» в технологии сборки. Его полагалось собирать с помощью динамометрических ключей, затягивая все резьбовые соединения до определённого усилия. А копию собирали обычными гаечными ключами, завинчивая всё до упора. Вероятно, от этого возникали какие-то напряжения, вибрации – и портили точность. Так что не так-то просто что-то скопировать, нужно уже быть на соответствующем уровне.
Например, попытались у нас на заводе скопировать японскую шахматную машинку, точнее, не саму её, а её индикатор. У неё он изображал шахматное поле с фигурами, но мог пригодиться для чего угодно. Предположительно, хоть для маленького телевизора, если быстродействия хватит. Машинка, между прочим, довольно хорошо играла в шахматы. Выиграть у неё смог только один человек. Случайно так совпало, на заводе ПУЛ работал чемпион СССР по переписке. Это, конечно, не то же самое, что чемпион, соревнующийся с соперниками в ограниченное часами время, но всё же. Он обнаружил, что у машинки большой, но всё же ограниченный запас запомненных вариантов игры, и нужно её сбить с толку каким-нибудь непредусмотренным ходом, например, взять и пожертвовать ферзя. Не для задуманной комбинации, а просто так. Тут у неё всё сбивалось, и она начинала играть довольно плохо. Впрочем, никто, кроме него, не мог и так у неё выиграть – всё-таки без ферзя тяжело. Но выигрышем у машинки все успехи и ограничились. Сделать такой же индикатор не удалось. Оказалось, по оригинальной технологии каждому элементу экрана (точке изображения) подходило с двух противоположных сторон два тонких проводочка из напылённого на поверхность экрана металла. Но технология на нашем заводе не позволяла изготовить столь тонкие и тесно расположенные проводочки. Меж тем для управления «точкой» на самом деле было достаточно одного провода на каждый пиксель экрана 28 . Решили одним и обойтись. Тут начались проблемы. При фотолитографии, с помощью которой из слоя напылённого металла вытравливались отдельные дорожки – провода, существенна чистота атмосферы на производстве. У японцев, по слухам, организуя электронное производство на некоем небольшом острове, накрыли его водяным куполом, вроде зонтика. В середине стоит труба и этот самый зонтик водяной из неё льётся, расходясь во все стороны. И всё ради уменьшения количества пыли. У нас же, хотя какие-то меры против пыли принимались, видимо, они были не того уровня. Когда речь шла о микросхемах меньшей площади, севшие случайно в процессе фотолитографии пылинки приводили, возможно, к браку отдельных микросхем, но достаточно большая часть их оставалась годной. А при сравнительно большой площади этого экрана непременно хоть одна пылинка на него попадала. Проводок прерывался и сигнал до «точки» не мог добраться. А организация изображения на этом экране была такова, что выпадение одной-единственной точки создавало на экране чёрный крест, в котором не работающая точка была в перекрестье. Если таких точки было две, два пересекающихся креста рисовали мрачную тюремную решётку. Несмотря на длительные попытки, не удалось изготовить даже одного-единственного экземпляра такого экрана, похвастаться успехами перед начальством в министерстве. Только зря хорошую машинку разломали.
28
Тут мне брат возражает. Не могло быть столько проводов. Наверное, было по два провода к каждой строке, и их заменили на один. Но тогда не получается крест. Получается, если ещё и было по два провода к каждому столбцу, и вышли из строя одновременно строка и столбец. Но я уверен, что мне рассказывали именно так. Один битый элемент вызывал крест с центром в этом элементе. Возможно, сам рассказчик не понял, как было организовано изображение.
Раз уж я взялся вспоминать про японцев, расскажу, что помню, о покупке у них линии производства индикаторов. Не помню уже, каких, катодолюминесцентных, жидкокристаллических, или ещё каких-то. Делегация, ездившая в Японию, посмотреть на месте, как у них работает такая линия, рассказала потом про это на заводе, а дальше слухи передавались. Я ни с одним из тех, кто ездил, не был знаком. Но, думаю, большого искажения не произошло. Первое, что их поразило, были просторные помещения. Все же знают, в Японии везде теснота. Остров небольшой 29 , много площади занимают горы, население огромное. Тогда, кажется, было 110 миллионов, в СССР – 250, а территория во сколько раз больше! Но оказалось, когда для производства нужно место, они не скупятся. В отличие от нас. Производство размещено в одноэтажном (!) здании, точнее, это квадрат, у которого одна сторона двухэтажная – там контора, а три одноэтажных. В середине квадрата зелёный двор для отдыха персонала. Единицы оборудования стоят на большом удалении одна от другой.
29
В.Ч.: ну всё-таки 4 острова главных плюс множество мелких. 110 млн тогда – похоже, Сейчас 120, причем население старое и не растет. – Я: Википедия пишет 6952 острова. Но 4 больших занимают 95% площади. 126 миллионов человек + чуть не 30 млн иностранцев. Практически 90% живут в городах. Горы занимают 75% территории. В таблице «Плотность населения» Япония на 26 месте, 336 жителей на км2, но учитывая горы, иностранцев и скученность в городах, получится значительно больше. Россия на 180 месте, 8,56 чел/км2, очевидно, из-за Сибири. А вот Украина больше похожа на Европу, место 100, 74 чел/км2. Так что за чем уж РФ на неё напала, но не из-за нехватки жизненного пространства.
Это тут же сказалось. У них там была печка для отжига деталей индикаторов, с температурой внешней стенки 80°С. По нашим нормам полагается не выше 40°С. Японцы не поняли, какую она может представлять опасность. Вот же, на полу нарисована толстая красная линия, чтоб не подходили, табличка предупреждающая висит, что ещё надо? Наши не могли сказать откровенно, что у нас в цеху такая теснота, что никакая линия и табличка не поможет – там просто не протиснешься, не обжёгшись об печку. В результате отсутствия у делегации внятных аргументов японцы согласились добавить теплоизоляции на печку, но за наш счёт.
Второе, что удивляло, оказалось, японцы вовсе не всё подряд автоматизируют. Известно же, у них на сборке автомобилей роботы работают. Но они, видимо, делают это, только когда выгодно, а когда нет – и так сойдёт. И вот стоит рабочий и вручную обтачивает прямоугольные стёклышки 30 для индикаторов, делая на них по краю фаску на вращающемся абразивном круге. Делает он это так. Берёт сразу двумя руками два стёклышка, прикладывает к кругу и делает одно непрерывное вращательное движение, длящееся примерно одну секунду. Вжжих! Откладывает стёклышки и берёт следующие… Делегация постояла возле него, засекла время на изготовления фасок на каком-то количестве стёклышек, и, потрясённая производительностью труда, отошла от этого не автоматизированного рабочего.
30
В.Ч.: совсем недавно видел в youtube, как какую-то примитивную спираль гнет вручную (на простейшем приспособлении) китайский рабочий, а вообще о таком явлении рассказано в широко рекламировавшемся в СССР романе 30х гг. Эптона Синклера «Джимми Хиггинс». Джимми тоже делает что-то невероятно примитивное много сотен раз за смену. А потому, объясняет автор, что себестоимость работы автомата – 8 долларов в неделю, Джимми же получает 7,5. Положим, это беллетристика. Но сестра моя младше на 7 лет попала под кампанию «профориентации на рабочие специальности» и в дополнение к нашей электронике учеников 13й школы водили на завод Саратовштамп, где женщина брала из ящика заготовку, ставила на столик, нажимала педаль, сверху падал штамп, затем отформованную деталь женщина сбрасывала в ящик с другой стороны. Никаких инфракрасных лучей и фотоэлементов, призванных заблокировать падение штампа, если женщина не убрала вовремя руку, не было. Сестра сказала. что получила замечательный внеплановый урок обществоведения и значительно усилила свою профориентацию (знак ведь не влияет на модуль величины). – Я: Вера Петровна пишет в своей автобиографической книге, что школа №13 стала физико-математической не сразу. Сперва была обычная, а потом при каком-то постановлении о профориентации там стали готовить, кажется, медиков и ткачих, с практикой на соответствующих предприятиях и в больницах или мединституте. Потом в число профориентации попали профессии электронщика и программиста. А потом ткачихи и медики как-то отстали и вообще про это все забыли за новыми программами реформы школы. А классы физиков математиков и химиков остались. Так сказать, профессиональная ориентация на научные кадры. Только не сразу на фабрику идти, а у универ. Нет, надо найти в её книге. Вот, 1961, школа становится одиннадцатилеткой в профориентационым уклоном. Всех учащихся девятых и десятых классов разбили по желанию (ага!) на классы чертёжников, телемехаников, медсестёр, швей-мотористок и т.д. Практической базой стали конструкторское бюро подшефного станкостроительного завода, телеателье по ремонту телевизоров, больница, ателье по пошиву верхней одежды и школьная мастерская… И ещё они кукурузу убирали… Потом… ага, в 63 году новая специализация – программист-вычислитель (хорошо, что не программист-арифмометр). Ещё в 63 году в день учителя её с группой учителей сфоткали для «Учительской газеты», после чего стали приходить письма от учителей с педагогическими проблемами, а также от заключённых с просьбами после отбывания срока приехать для дальнейшего перевоспитания, что её напугало. В 64-65 году ездили на экскурсии в Мск и Ленинград на деньги, заработанные на заводе ПУЛ и строительстве котельной клуба, на почте и т.д. – после уроков. И домашние задания делали. В 64 году все (кроме 19-й школы) математические классы Саратова, перевели в 13-ю и сделали её физико-математической. А универ подарил машину Урал-1 (100 операций в секунду), приобретя себе Урал-2 (5000 операций в секунду). Урал-1 состоял из нескольких блоков-шкафов, установленных вдоль задней стены кабинета. … Новый учитель физики расставил все блоки машины экономным способом (каким?) и заставил её работать. … В 65 году был создан палаточный лагерь труда и отдыха на Медведице… В 64-65 году вернули десятилетку, что привело в 66 к двойному выпуску и жуткому конкурсу в ВУЗы…
Кстати, читал я как-то, что на контроле микросхем там сидят японки и смотрят в бинокулярный микроскоп, выискивая брак. Только он настроен своеобразно. В каждый окуляр видна своя половина предметного столика, а вовсе не его середина. Так контролёрша, опять же двумя руками сразу, берёт двумя пинцетами сразу две микросхемы и кладёт под микроскоп, каждым глазом рассматривает свою микросхему и ускоряет работу вдвое. Или почти вдвое. Не знаю, правда ли это. Это я в интернете когда-то прочёл. Может, просто дефекты искали, совместив две в идеале одинаковые микросхемы в бинокулярном поле зрения.