Шрифт:
Забегая вперёд, я потом увидел французский Оже-спектрометр (кажется, фирмы «Рибок»… пардон, «Рибер», конечно) и поразился, какие там на фланцах маленькие гаечки и как редко расположены. На небольших фланцах с окошками, например, всего по шесть штук. Я вспомнил, как мы крутили свои огромные гайки, позавидовал и спросил, почему такая разница. Оказалось, на нашем сверхвысоковакуумном оборудовании применяется на фланцах система уплотнения «зуб – канавка» 40 . А за рубежом уже применяют систему из двух концентрических кольцевых зубов и канавок. Уплотнение лучше, и потому не требуется такого давления на прокладки. – А почему у нас не применяют, раз известно, что это лучше? – Не хватает точности. Два зуба и две канавки нужно делать точнее, чтобы они правильно попали друг на друга.
40
Т.е. на одном фланце кольцевая канавка, на другом кольцевой зуб, плоская кольцевая медная прокладка сдавливается между ними. Тоже, между прочим, не такое простое с ней обращение. Если запасная прокладка полежала какое-то время без употребления, медь окислилась, стала жёсткой. Перед тем, как ставить на место, нужно отжигать в водороде для удаления кислорода. Хорошо, у нас на заводе такая печка была… И обращаться с мягкой медью очень осторожно – не поцарапать. Любая царапина может стать местом течи.
В конце концов, основную камеру мы развинтили. Сильфон отвинтили и отправили на починку в Рязань. Получили починенный, всё собрали обратно. Обмотали прибор нагревательными шнурами, закутали в стеклоткань, и трое суток обезгаживали, ночуя поочерёдно в лаборатории. Потому что нужно всё время следить за давлением, если уменьшается, можно прибавить нагрев, если слишком растёт, убавить.
Кстати, вспомнил забавный эпизод с обезгаживанием предыдущей, самодельной установки для исследования газоотделения. Мы тогда перестарались с нагревом, стеклянная трубка, на которой был приварен омегатрон, размягчилась и под действием вакуума внутри схлопнулась и превратилась в стеклянную палочку. Мало того, эта палочка до такой степени истончилась 41 , что согнулась под весом омегатрона, и он печально повис. Хотел было написать, что он вышел из зазора магнита, но это я забыл детали. Магнит, конечно, на время нагревания установки мы снимали с неё, чтобы он не размагнитился. Заметили мы прежде всего движение: омегатрон на гибком от малой толщины стекле слегка покачивался. И первое время, уставившись на него, не могли понять, что это мы такое странное видим…
41
стекло из неё уползало в стороны более массивных деталей по обе стороны, то ли под влиянием того же атмосферного давления, что сплющило трубку, то ли под влиянием поверхностного натяжения жидкого стекла
Это была такая шутка природы, заодно напишу про обычную шутку. Я её, кажется, где-то прочитал и применил к руководителю (это штрих к нашим взаимоотношениям). – Хочешь, – говорю ему как-то, – покажу фокус на невключённом осциллографе? – Хочу, – говорит. Я похожу к осциллографу и молча тыкаю пальцем в надпись «Фокус» возле ручки регулировки фокусировки пучка… Я потом всем, кому мог, показал этот «фокус», а где-то через год случайно вспомнил, хорошая шутка была. И спрашиваю его осторожно: Слушай, я вот не помню, я показывал тебе фокус на невключённом осциллографе? – Вроде, показывал, – отвечает он. – Но я что-то забыл. Покажи ещё раз! – Я показал. – Вот болван! – сказал он скорее себе, чем мне, хлопнув себя по лбу. Не со злостью, впрочем, а с иронией.
Поиск течи делается с помощью специального прибора, течеискателя. Потому что мало обнаружить сам факт течи. Это-то легко – при течи не удаётся добиться требуемого вакуума. Сверхвысокий вакуум, нужный для Оже-спектрометра, это 10–8– 10–10. Гораздо выше, чем, скажем, для электронного микроскопа. Дело в том, что Оже-электроны, с их относительно небольшой энергией, не вылетают с большой глубины образца. Анализируется самый верхний слой, практически несколько атомных слоёв. Это и преимущество – хорошая чувствительность к поверхностным загрязнениям, например, которые можно таким образом хорошо обнаруживать. И недостаток, точнее, сложность в работе, потому что малейшее присутствие остаточных газов, особенно углеродосодержащих, под действием электронного пучка вызывает образование загрязнений на том самом месте, которое анализируешь. Вот поэтому и нужен хороший вакуум. В электронном микроскопе пучок электронов с большой энергией проходит через тонкий образец насквозь, что ему какой-то лишний атомный слой углеродных загрязнений.
Да, так течеискатель. Он действует, по сравнению с наблюдением самой течи, наоборот. Там откачивался воздух и мы смотрели на показания манометра внутри прибора. А тут в прибор закачивается гелий, а течеискатель фиксирует наличие гелия снаружи. У него есть тонкий щуп, трубочка на гибком шланге, этим щупом нужно провести по всем местам соединений, а течеискатель, находясь, в отличие от манометра, снаружи от прибора, подаёт звуковой сигнал, если где гелий вытекает. А вытекает он гораздо лучше, чем остальные газы. Атомы маленькие и химически инертные, ни за что не цепляются. Однако, когда речь о сверхвысоковакуумном приборе, течь может быть такая маленькая, что течеискатель не помогает. Приходится подтягивать гайки на всех фланцах и следить за давлением при откачке. То есть ловить течь методом тыка. Иногда случается и перетянуть шпильки – медная прокладка прорезается и – начинай всё сначала. Правда, при кратковременном впуске атмосферы потом всё же обезгаживание не столь долгое, как после того, как прибор год простоял под атмосферой. Собственно, первоначально он был под вакуумом, но вакуум сам по себе, без постоянной откачки, не поддерживается.
Ещё были всякие неурядицы при работе чувствительного прибора на заводе. Например, как-то за стенкой взвыла дрель, и в спектрометре сам собой включился форвакуумный насос и стал перекачивать воздух из комнаты в неё же. Он был в тот момент отсоединён. Он и нужен только на начальном этапе откачки. Поддерживает вакуум диффузионный насос, который не может работать прямо на атмосферу. Совместно они откачивают маленькую загрузочную камеру, в которую загрузили образец на специальном держателе с хвостовиком, из которого торчат маленькие шпенёчки для зацепляния манипулятором. Когда в загрузочной камере достигается достаточно хороший вакуум (не такой, как в основной, но всё же чтобы при кратком контакте через трубу не сильно испортить вакуум), манипулятор, управляемый вручную с помощью надетого на его трубу магнита, захватывает этот хвостовик, надеваясь на шпенёчки своими прорезями, перетаскивает держатель с образцом в основную камеру и задвигает в тамошний карусельный держатель, имеющей несколько мест для держателей образцов. Потом манипулятор извлекается из основной камеры, закрывается шлюз между ними, и основная камера дополнительно откачивается до рабочего вакуума. Бывает и так, что при неловком движении держатель с образцом падает. В расположенный прямо под основной камерой магниторазрядный насос он не попадает, там специально закреплена внизу основной камеры сетка. Но прямо сразу извлекать образец было нерационально, слишком долго развинчивать и завинчивать основную камеру – см. описание выше – и снова отжиг проводить. Так что мы делали это, когда на сетке накапливалось несколько держателей с образцами и их начинало не хватать для новых образцов. Впрочем, в какой-то момент Якорев заказал изготовить такие же держатели, это было не очень сложно, такая точность, как, скажем, для фланцев вакуумных соединений или, тем более, для анализатора «цилиндрическое зеркало», была не нужна.
В общем, долго ли, коротко, спектрометр заработал, и мы стали усердно доказывать начальству, что на него не напрасно потрачена куча денег, что он очень полезен для производства. В основном, определяли причины брака, которыми чаще всего оказывались загрязнения. Какая-то работница на обед покушала селёдку и не помыла руки. Селёдочный жир на микросхеме, микросхема выходит из строя.
Иногда загрязнения были не углеродными, а более интересными. Раз мы нашли палладий на образцах, где его не должно было быть, и он был вреден. Это не такой уж распространённый элемент таблицы Менделеева, откуда он взялся? Оказалось, там рядом с теми образцами делали другие, где палладий как раз был нужен – их палладировали. После этого отмывали от соединения палладия, из которого его осаждали, в воде. Колбу с водой, естественно, мыли. И как-то, перепутав посуду, использовали для отмывки исследуемых образцов. От чего-то другого, не палладия, конечно. Тогда он к ним и прилип. То есть произошла не совсем тривиальная вещь. Палладий от тех, других, образцов, отмывался, потому что прилипал к ним слабее, чем растворялся в воде. Тем не менее, какая-то небольшая его часть оказалась более склонна прилипнуть на стекло колбы, чем оставаться в растворе, куда она так стремилась только что. Потом колбу мыли, но какая-то часть палладия прицепилась к стеклу так прочно, что не отмылась. Однако – при следующем наполнении водой и тут какая-то небольшая часть прилипчивого палладия оказалась в растворе. И из раствора предпочла переприлипнуть на наши образцы. Если каждый раз количество палладия снижалось порядка на два-три, его получилось в 1012– 1018 раз меньше. И этого хватило, чтобы Оже-спектрометр его обнаружил! Велика сила науки на службе электронной промышленности. Правда, у палладия на редкость большой Оже-пик, но всё же и увидели мы его очень надёжно. И я убедился в справедливости утверждения Анаксагора «всё есть во всём». Потому он и сделал свои гомеомерии бесконечно делимыми (в отличие от атомов Демокрита), чтобы в любом веществе оказались следы всех других. Ну ладно. Это всё хорошо, но я подозреваю, что работники цеха просто не сознались в каком-то более крупном нарушении технологии, чем использование той же колбы. Например, они её между использованиями для отмывки разных образцов не мыли. А это уже уменьшение концентрации палладия не в 1012, а всего лишь в 1010. Впрочем, и так неплохо.
Был случай брака, интересный сам по себе. Изготовленный полупроводниковый лазер AlxGa1–xAs-GaAs выходил из строя при работе из-за того, что под действием приложенного поперечного поля по его зеркалу ползла капля металла и замыкала электроды. Металл оказался эвтектикой галлия и, кажется, олова. Температура её плавления была ниже температуры плавления галлия и олова по отдельности, подобно тому, как припой, состоящий из олова и свинца, плавится при температуре ниже их обоих. В сущности, галлий сам по себе довольно легкоплавкий металл, а в сплаве с оловом – тем более, лазер же при работе довольно сильно греется. Удивительным тут было то, что олово в приборе не соприкасалось с галлием, ни содержащимся в арсениде галлия, ни содержащимся в арсениде галлия-алюминия. Как же они ухитряются смешиваться и образовывать эвтектику? А вот так. Эвтектика заранее, как легкоплавкое соединение, образуется ещё до физического смешивания металлов, то есть они плавятся и устремляются друг к другу навстречу. Можно сказать, между ними образуется некий химический потенциал, который их притягивает, объединяет ещё до непосредственного соединения и заставляет расплавиться. Как это ещё объяснить? Стали между ними помещать слой, кажется, хрома, помогало с переменным успехом. Толстый слой хрома тоже чем-то мешал, а тонкий не помогал. Дальнейших подробностей не знаю.