Вход/Регистрация
Гурджиев. Эссе и размышления о Человеке и его Учении
вернуться

Гурджиев Георгий Иванович

Шрифт:

В некоторых традициях, например в рагах Северной Индии, узор мелодического движения между 1 и 2 рассматривается, как коды или схемы энергий, движущихся по различным уровням и состояниям человеческого существа. Но это можно ощутить только тогда, когда все ключевые аспекты — как мы слушаем, как мы воспринимаем звук телом и различными резонирующими центрами — взаимодействуют гармонично.

Первая восходящая гармоника после загадочного скачка на октаву между 1 и 2 — третья, 3, звучащая как нота "соль"; 4 — нота "до"; 5 — нота "ми"; 6, или дважды три, на октаву выше 3 гармоники — также нота "соль"; 7 — "си бемоль"; 8 — снова "до"; 9 — "ре"; 10 — снова "ми"; 11 — нота между "фа" и "фа диез"; 12 — снова "соль"; 13 — "ля бемоль"; 14 — на октаву выше 7, "си бемоль"; 15 — "си"; 16 — снова "до"; 17 — "ре бемоль"; 18 — снова "ре"; 19 — "ми бемоль"; 20 — снова "ми"; 21 — приблизительно "фа"; 22 — аналогична 11; 23 — "фа дубль-диез"; и 24 — снова "соль".

Существуют восходящие и нисходящие гармонические ряды. Гармоники музыкального звука — восходящие, в том смысле, что по мере увеличения их частоты увеличивается сдвиг относительно основной ноты. Однако вместе с тем можно образовать и спеть ноты и обратные гаммы, соответствующие пропорциям нисходящих гармонических рядов (субгармоники). Например, музыкальные отрезки 2/1, 3/1, 4/1 и т. д. восходящих рядов зеркально отражаются нисходящими от той же ноты гармоническими рядами: 1/2, 1/3, 1/4. Музыкальные отрезки идентичны, и конечно, интервалы меняют порядок (3/1 дает "соль" выше "до", в то время как 1/3 дает "фа" ниже "до"). Два набора гармоник взаимно дополняют друг друга, и умножение любого гармонического интервала на соответствующий субгармонический интервал всегда дает 1/1 (например, 3/2 х 2/3 = 1/1).

Четные гармоники являются повторениями предшествующих гармоник, поскольку они делятся на 2 и, таким образом, звучат как октавы. Например, октавами 1 будут гармоники 2, 4, 8, 16, 32, 64 и т. д. Они представляют собой те же, только более высокие, ноты; или же, в случае деления на два, более низкие — например, 1/2, 1/3, 1/8. Нечетные гармоники — новые ноты, появляющиеся впервые.

Гармоники представляют собой чистые, не темперированные и полностью согласованные между собой варианты сильно урезанного и расстроенного набора нот, который со времен "Хорошо темперированного клавира" Баха используется в 12-нотной равномерной темперации. В вышеупомянутых 24 гармониках мы встречаем как ноты, значительно отличающиеся от их темперированной версии (5, 7), так и/или неизвестные в нашей обычной гамме (7, 11, 13, 14).

Главная гамма происходит от гармонических рядов. "До" (1), "ре" (9), "ми" (5), "соль" (3), "ля" (27) и "си" (15) происходят от восходящего гармонического ряда, а "фа" (4/3) — от нисходящего.

По мере восхождения гармоник (их транспонирования/соотношения к 1) после гармонического промежутка в первой октаве в следующих октавах появляется все больше и больше гармоник. В каждой последующей октаве между двумя соседними гармониками предыдущей октавы всегда появляется новая гармоника. Например, 3 между 1 и 2; 5 между 3 и 7; 7 между 3 и 4. Появляются все более и более тонкие градации основных нот, и ступени становятся все ближе и ближе. Музыкальное различие между одной гармоникой и последующей все больше и больше относится к области едва различимой микротональности.

Можно считать, что идея интервалов, или восприятия специфической гармонии между нотами, возникла благодаря соотношениям гармонических рядов. Любую ноту можно рассматривать, как гармонику, а любой музыкальный интервал — как соотношение между гармониками. Это основное соотношение может быть транспонировано и выражено, как целочисленная пропорция в изначальной октаве от 1 до 2.

Все музыкальные интервалы — более высокая нота в сочетании с более низкой — образуются тремя следующими способами:

1. Как отношение между восходящей гармоникой и ближайшей 1 как более низкой нотой Например, 2/1 (октава), 3/2 (квинта), 5/4 (большая терция). Математически это можно выразить просто как h/1, где h — любое положительное целое число, а знаменатель — 1 или любая из октав единицы -2, 4, 8 и т. д.

2. Как отношение между более высокой нотой, соответствующей 1 или одной из ее октав, и нисходящей гармоникой. Математически это можно выразить как 1/h, где 1 — более высокая нота, а более низкая нота соответствует гармонике, нисходящей от этой единицы. Например, соотношение 4/3 определяет кварту, "до" — "фа". 1/3 — третья субгармоника нисходящего ряда. Поскольку 3 — нечетное число, 1 транспонируется на две октавы, в 4.

3. Третий способ образования музыкальных интервалов, "в котором нет 1" — гармоника между двумя нотами, ни одна из которых не является ни 1, ни октавой 1. Это можно выразить, как h1/h2. Например, музыкальные интервалы 13/9, 7/5 и 9/7.

Без транспонирования первая группа интервалов h/1, где h — любое положительное целое число, по мере увеличения номера гармоники стремится к бесконечности. В бесконечности одна гармоника столь же высока, как и последующая… тихое единство в Абсолюте. Во втором случае численное выражение интервалов, соответствующих 1/h, стремится к нулю — и снова тишина… В третьем варианте, где ни одна из гармоник не являются 1, тенденции развиваются в обоих направлениях. При транспонировании можно изучать все три варианта "в одном", в изначальной октаве между 1 и 2.

Возможность настройки гармоник на 1, на любую другую ноту, или одной гармоники к другой означает, что диапазон возможных интервалов и гармоний бесконечен, как и сами гармоники, заключая в себе любое целочисленное соотношение. Таким образом, гармоники — источник множества интервалов, о которых мы не знаем, которые мы не используем или забыли, но которые представляют значительный музыкальный интерес.

Гармонические ряды являются, конечно, источником весьма ограниченного количества нот и интервалов, обычно используемых в наших гаммах; но они были расстроены 12-нотной равномерной темперацией, в которой фактически не строит ни один интервал внутри октавы. Все подобные интервалы основаны исключительно на иррациональном числе — корне из 2.

  • Читать дальше
  • 1
  • ...
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: