Вход/Регистрация
Не лги себе. Почему Big Data знает тебя лучше, чем ты сам, и как использовать это, чтобы добиться успеха
вернуться

Cтивенс-Давидовиц Cет

Шрифт:

О важности демонстрации себя ради хорошей карьеры говорили многие. Но ученые, занятые исследованием данных, показали, что важно демонстрировать себя много где.

Я вовсе не хочу сказать, что эта книга будет источником советов исключительно для одиноких, молодых родителей и начинающих художников (хотя полезные указания для каждой из этих групп в ней еще будут). Моя задача – подчеркнуть выводы из больших массивов данных, которые были бы полезны именно для вас, независимо от того, на каком этапе жизни вы находитесь. Ниже последуют недавно разработанные указания, как быть счастливее, выглядеть лучше, продвинуться в карьере – и многое другое. А идея книги пришла ко мне как-то вечером, когда я… смотрел бейсбольный матч.

Moneyball для вашей собственной жизни

И я, и другие любители бейсбола не могли не заметить, что он стал совсем не той игрой, что тридцать лет назад. Когда я был мальчишкой и болел за New York Mets, бейсбольные команды выбирали тактику, опираясь на собственное понимание игры и интуицию. Они решали, сделать ли им бант или украсть базу, в зависимости от того, как смотрел на это менеджер команды. Они выбирали игроков для приобретения, опираясь на впечатления скаута.

Однако во второй половине XX века стали появляться признаки, указывавшие на существование более разумной тактики. В моем детстве отец каждый год приносил домой новую книгу Билла Джеймса. Джеймс, который работал охранником на заводе консервированных бобов со свининой, был одержим бейсболом. И у него был нестандартный метод анализа игры – с помощью недавно появившихся компьютеров и оцифрованных данных. Джеймс и его коллеги – они называли себя сайберметристами – при помощи анализа данных выяснили, что большинство решений, принимавшихся командами под влиянием интуиции, были полностью ошибочными.

Как часто команде нужно исполнять бант? Значительно реже, чем сейчас, говорили сайберметристы. А как часто следует красть базы? Почти никогда. Сколько должны стоить игроки, приносящие много пробежек? Больше, чем думали команды. Кого следовало приобретать? Больше питчеров из университетских команд.

Работа Джеймса производила захватывающее впечатление не только на моего отца. Билли Бин, который начинал карьеру в качестве игрока, а впоследствии переквалифицировался в бейсбольного администратора, тоже был его горячим сторонником. И став генеральным директором клуба Oakland Athletics, он решил управлять им в соответствии с принципами сайберметрики.

Идея принесла выдающиеся результаты. В книге Moneyball приводится довольно известный факт: в Oakland Athletics платили очень скромные зарплаты, но при этом команда выходила в плей-офф в 2002 и 2003 годах [4] . С тех пор роль аналитики в бейсболе резко возросла. Клуб Tampa Bay Rays, о котором говорили, что он больше следует Moneyball, чем сама команда Oakland Athletics из Moneyball [5] , вышел в World Series 2020, несмотря на третий с конца уровень зарплат в бейсболе.

4

Michael Lewis “Moneyball: The Art of Winning an Unfair Game” (New York: Norton, 2004).

5

Jared Diamond, “How to succeed in baseball without spending money”, Wall Street Journal, October 1, 2019.

Принципы Moneyball и лежащая в их основе здравая идея, что когнитивные искажения могут быть компенсированы данными, повлияли на многие учреждения и виды спорта. Команды NBA все больше используют аналитику, прослеживающую траекторию каждого броска [6] . В данных о 300 миллионах бросков были найдены значительные отклонения от оптимальной техники. Оказывается, что для среднего игрока NBA, выполняющего бросок в прыжке, вероятность пропустить бросок с недолетом вдвое выше, чем бросок с перелетом. А когда он выполняет бросок из угла, он скорее промахнется в сторону, противоположную щиту, потому что может опасаться попасть в него. Игроки воспользовались подобными данными, чтобы и корректировать когнитивные искажения, и одновременно делать больше бросков.

6

Ben Dowsett, “How shot-tracking is changing the way basketball players fix their game”, FiveThirtyEight, August 16, 2021, https://fivethirtyeight.com/features/how-shot-tracking-is-changing-the-way-basketball-players-fix-their-game/.

Фирмы Кремниевой долины в значительной степени опираются на принципы, изложенные в Moneyball. Google, где я в прошлом работал аналитиком данных, определенно верит в полезность данных при принятии важных решений. Была довольно известная история, когда оттуда уволился дизайнер, недовольный тем, что компания предпочитала данные, а не интуицию квалифицированных дизайнеров. Последней каплей для него стал эксперимент, в котором компания испытывала сорок один оттенок синего [7] для гиперссылок в Gmail, чтобы выяснить на практике, какой из них даст больше всего кликов. Возможно, дизайнер и был недоволен, но эксперимент принес Google 200 миллионов долларов дополнительного дохода в год [8] . Google ни разу не поколебался в своей вере в данные – и со временем превратился в компанию ценой в 1,8 триллиона долларов. Как сказал ее бывший исполнительный директор Эрик Шмидт: «В Бога мы верим. Все остальные должны предоставлять данные» [9] .

7

Douglas Bowman, “Goodbye, Google”,March 20, 2009.

8

Alex Horn, “Why Google has 200m reasons to put engineers over designers”, Guardian, February 5, 2014.

9

“Are we better off with the internet?” YouTube, uploaded by the Aspen Institute, July 1, 2012, https://www.youtube.com/watch?v=djVrLNaFvIo.

Джеймс Симонс, математик мирового класса и основатель компании Renaissance Technologies, принес строгий анализ данных на Уолл-стрит. Он и его группа количественных аналитиков создали беспрецедентный массив данных, содержащий одновременно курсы акций и события реального мира, и подвергли его анализу на предмет закономерностей. Какова тенденция изменения курсов после того, как компания-эмитент объявляет о прибылях? А при дефиците хлеба? А после упоминания компании в газете?

С момента основания Renaissance ее флагманский инвестиционный фонд Medallion [10] , который в своей торговой стратегии опирается исключительно на закономерности в данных, всегда приносил 66 % прибыли до вычета налогов и сборов. В тот же период S&P 500 приносил 10 % до вычета. Экономист Кеннет Френч (его имя связывают с гипотезой эффективного рынка, говорящей о практической невозможности обеспечить показатели существенно выше S&P 500) так объясняет успех Renaissance: «Видимо, они просто лучше всех остальных» [11] .

10

Gregory Zuckerman, The Man Who Solved the Market (New York: Penguin, 2019).

11

Amy Whyte, “Famed Medallion fund ‘stretches… explanation to the limit,’ professor claims”, Institutional Investor, January 26, 2020, https://www.institutionalinvestor.com/article/b1k2fymby99nj0/Famed-Medallion-Fund-Stretches-Explanation-to-the-Limit-Professor-Claims.

Но как нам принимать важные решения, касающиеся личной жизни? Как выбрать партнера для брака, как ходить на свидания, как проводить время, соглашаться ли на то или иное предложение о работе?

На кого мы больше похожи – на Oakland Athletics в 2002 году или на прочие бейсбольные команды в то же время? На Google или на привычный магазин? На Renaissance Technologies или на обычного управляющего инвестиционным фондом?

Я бы сказал, что большинство из нас принимают важнейшие решения, опираясь на интуицию. Может быть, мы посоветуемся с кем-то из друзей, родственников или самозваных гуру по части искусства жить. Может быть, прочитаем какие-то ни на чем не основанные советы. Бросим беглый взгляд на самую базовую статистику. И затем просто сделаем то, что кажется нам правильным.

  • Читать дальше
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: