Шрифт:
«Что бы произошло, начни мы решать самые важные жизненные вопросы с опорой на данные?» – спрашивал я себя, смотря бейсбольный матч по телевизору. Если бы мы администрировали свою жизнь так же, как Билли Бин – клуб Oakland Athletics?
Я знаю, что в наши дни подобный подход становится все более осуществимым. В своей предыдущей книге «Все лгут» я показывал, как новые данные, которые стали доступны нам благодаря Интернету, меняют наши представления об обществе и работе человеческого ума. Может быть, статистическая революция началась с бейсбола именно из-за статистической информации, которую собирали и на которую создавали спрос сумасшедшие болельщики. Так сказать, «революция Moneyball для нашей жизни» стала возможной благодаря данным, которые собрали наши компьютеры и смартфоны.
Давайте зададимся не таким уж тривиальным вопросом: что делает людей счастливыми?
Данные, необходимые для строгого и систематического ответа на этот вопрос, в XX веке были недоступны.
Когда революция Moneyball потрясла мир бейсбола, в распоряжении сайберметристов были аккуратнейшим образом зарегистрированные данные по каждой игре и им было что анализировать. Но аналитики данных тогда не располагали подобными сведениями относительно существенных жизненных решений и настроений обычных людей. В те времена счастье, в отличие от бейсбола, не поддавалось строгому анализу.
Но теперь такая возможность есть.
Блестящие специалисты из Google, Джордж Маккеррон и Сюзанна Мурато, при помощи аппаратов iPhone сформировали не имеющий аналогов массив данных о счастье и назвали свой проект Mappiness [12] . Они привлекли к работе десятки тысяч пользователей, которых опрашивали по нескольку раз в течение дня. Им задавали простые вопросы: что они делают в данный момент, с кем они, насколько при этом счастливы. Таким образом они получили массив данных более чем из трех миллионов «замеров счастья». Это нельзя даже сравнивать с десятками измерений, на которые опирались исследования счастья в прошлом.
12
Дополнительную информацию о проекте Mappiness можно найти по адресу http://www.mappiness.org.uk.
Некоторые из скрытых в этих миллионах точек результатов наводят на размышления. Например, болельщики получают больше страданий от проигрыша своей команды, чем радости от ее победы. Иногда они противоречат нашим интуитивным представлениям: так, употребление алкоголя во время исполнения рутинных обязанностей в среднем доставляет больше удовольствия, чем во время общения с друзьями. Иногда результаты представляются здравыми: работа имеет тенденцию раздражать – если только мы не работаем вместе с друзьями.
Но полезны эти результаты всегда. Вы никогда не задавались вопросом, как в точности погода влияет на настроение? Какие занятия в среднем чаще всего обманывают нас в смысле ожидаемого удовольствия? Насколько деньги действительно важны для счастья? В какой мере настроение зависит от среды? Благодаря Маккеррону и Мурато у нас теперь есть достоверные ответы на эти вопросы – и они будут предметом восьмой и девятой глав. Я даже завершу эту книгу надежной формулой счастья, выведенной из замеров на тысячах смартфонов. Я называю ее «ответом на главный вопрос жизни, полученным при помощи данных».
Итак, последние четыре года я, вдохновившись примером бейсбола, погрузился в напряженную научную работу. Я говорил со специалистами. Читал академические публикации. Рассматривал приложения к публикациям под таким углом, который – я совершенно уверен в этом – еще не приходил в голову ни одному ученому. Провел несколько собственных исследований и интерпретировал их результаты. Свою задачу я видел в том, чтобы найти своих Биллов Джеймсов в таких областях, как брак, воспитание детей, спортивные достижения, финансовое благосостояние, удача, стиль и счастье, – и дать каждому из вас возможность стать Билли Бином своей жизни. Я готов поделиться всем, что узнал.
Называйте это «Moneyball вашей собственной жизни».
Передвижения в игровом поле жизни
Прежде чем приступить к работе, я задал себе несколько вопросов. Как могла бы выглядеть жизнь, в основу которой положены принципы Moneyball? Как мог бы выглядеть наш процесс принятия решений, если бы мы, подобно Oakland Athletics и Tampa Bay Rays, следовали данным, а не инстинктам? Одно из бросающихся в глаза свойств бейсбола после Moneyball заключается в том, что некоторые решения опирающихся на аналитику команд выглядят… скажем так, немного странными. Вот вам пример – расположение инфилдеров [13] .
13
Игрок защищающейся стороны, находящийся на игровом поле. – Прим. пер.
В эпоху после Moneyball бейсбольные команды все активнее смещают положение полевых игроков. Они группируют многих своих защитников в одной и той же части поля, оставляя его обширные участки совершенно незащищенными, куда бьющему игроку ничего не стоит направить мяч. Такое смещение игроков на игровом поле кажется болельщикам традиционного бейсбола чистым безумием. Но от безумия оно предельно далеко. Подобное смещение оправдывается огромными массивами данных, предсказывающими, куда именно конкретный игрок, скорее всего, пошлет мяч [14] . Числа говорят бейсбольным командам, что такая тактика верна, пусть и кажется неверной на первый взгляд.
14
Rob Arthur and Ben Lindbergh, “Yes, the infield shift works. Probably”, June 30, 2016, https://fivethirtyeight.com/features/yes-the-infield-shift-works-probably/.