Вход/Регистрация
Об ИИ без мифов. Путеводитель по истории Искусственного Интеллекта
вернуться

Черняк Леонид

Шрифт:

Импульс, приданный Хопфилдом работам в области ANN, позволил последующим событиям развиваться с калейдоскопической быстротой. Многие из них были непосредственно связаны с Джеффри Хинтоном, что сделало его признанным лидером новой волны коннекционизма, которую можно назвать мэйнстримом. Старт состоялся в 1986 году, вместе с выходом в журнале Nature ставшей широко известной статьи «Представление обучения посредством метода обратного распространения ошибок» (Learning representations by backpropagating errors). Ее первым и основным автором был психолог-математик и видный представитель коннекционистского подхода Дэвид Румельхарт, а соавторами Джеффри Хинтон и Рональд Уилсон. В ней изложен алгоритм обратного распространения ошибки в приложении к многослойному персептрону Румельхарта, являющемуся частным случаем персептрона Розенблатта. Публикация статьи во всемирно известном журнале без упоминания предыстории backpropagating была неодобрительно встречена многим специалистами. Поскольку Румельхарт вскоре ушел из жизни, за это невольное упущение пришлось оправдываться Хинтону, это было впервые, другой случай описан выше. Но, если по существу, оппонентам не стоило поднимать волну, им следовало бы смириться с тем, что в истории науки и техники подобные прецеденты повторных открытий и изобретений далеко не редкость. Хорошо известны так называемые затяжные «патентные войны» между индивидуальными изобретателями или корпорациями.

В том же 1986 году Полом Смоленским (нельзя не обратить внимание на сходство фамилий с Минским, и у него тоже российские корни) была разработана собственная версия машины Больцмана, названная ограниченной (Restricted Boltzmann machine, RBM). RBM отличается способностью проходить обучение как без учителя, так и с учителем. В 2000-х годах RBM приобрела большую популярность и стала рассматриваться не как вариации машины Больцмана, а как особые компоненты в архитектуре сетей глубинного обучения. Дальнейшее развитие машина Больцмана получила в 2006 году в совместной работе Хинтона с его аспирантом Русланом Салахутдиновым, новую версию она назвали глубокой (Deep Boltzmann machine) в связи с тем, что она содержит множество уровней со скрытыми переменными. В 1989–90 годы отмечены активным вхождением Яна Лекуна в область ANN и глубокого обучения, он стал вторым после Хинтона лидером этого мэйнстрима. Работая в Bell Labs, он вместе с коллегами смог материализовать метод backpropagation на сверточной нейронной сети LeNet (Convolutional Neural Network, CNN) в приложении для распознавания рукописного текста на банковских чеках и на почтовых отправлениях. Ошибки при распознавании не превысили 1 %.

Канадская мафия

Ближе к середине прошлого десятилетия была накоплена критическая масса знаний в части глубокого обучения ANN. В таких случаях всегда, образно говоря, кто-то отрывается от пелотона и зарабатывает майку лидера, так было и, видимо, будет в науке всегда. В данном случае в роли лидера оказался Джеффри Хинтон, британский ученый, продолживший свою карьеру в Канаде. С 2006 года он сам и вместе с коллегами начал публиковать многочисленные статьи, посвященные ANN, в том числе и в научно-популярном журнале Nature, чем заслужил себе прижизненную славу классика. Вокруг него образовалось сильное и сплоченное сообщество, которое несколько лет работало, как теперь говорят, «в невидимом режиме». Его члены сами называют себя «заговорщиками глубокого обучения» (Deep Learning Conspiracy) или даже «канадской мафией» (Canadian mafia). Образовалось ведущее трио: Ян Лекун, Иешуа Бенджо и Джеффри Хинтон, их еще называют LBH (LeCun & Bengio & Hinton). Выход LBH из подполья был хорошо подготовлен и поддержан компаниями Google, Facebook и Microsoft. С LBH активно сотрудничал Эндрю Ын, работавший в МТИ и в Беркли, а теперь возглавляющий исследования в области искусственного интеллекта в лаборатории Baidu. Он связал глубинное обучение с графическими процессорами.

Сегодня машинное обучение ассоциируется с глубоким машинным обучением, то есть с одним из методов реализации машинного обучения, где средствами искусственных нейронных сетей имитируются структуры и функции мозга, поэтому его иногда еще называют структурным или иерархическим обучением. Термин Deep Learning раньше других использовали Рина Дехтер (1986) и Игорь Айзенберг (2000). Между тем японские специалисты утверждают, что именно они выдвинули идею, которую можно считать основой глубинного обучения, при этом называются имена Фукусимы Кунихико и Амари Сюнъити, также занимавшегося исследованием нейросетей.

Были и другие предшественники глубокого обучения, но оно «заработало» и смогло занять свое нынешнее место только после того, как было дополнено еще методом backpropagation. Этот метод применим для сверточных нейронных сетей CNN (Convolutional Neural Network), которые можно рассматривать как подобие зрительной коры, работа которой связана с активацией определённого набора простых клеток. Такие сети являются многослойными и однонаправленными (feedforward neural network).

Как любую новацию, глубокое машинное обучение, ставшее основой нынешнего AI-бума, не обошли раздоры, связанные с приоритетом. Так уж сложилось, что авторами всего того технологического богатства, которым располагает человечество, были тысячи и тысячи людей, но только избранных называют первыми. Любой приоритет условен, изобретения появляются в благоприятное для них время, когда возникают необходимые условия и предпосылки. Вот и сейчас вся публичная слава создателей глубокого обучения, а заодно и «отцов современного AI», досталась трио Хинтон-Лекун-Бенджо, но в тени остался швейцарец Юрген Шмидхубер, работающий в альтернативном направлении, которое называется долгая краткосрочная память LSTM (Long Memory).

В марте 2019 Тьюринговская награда 2018 года, аналог Нобелевской премии в компьютинге, была присуждена Джеффри Хинтону, Янну Лекуну и Джошуа Бенджо. В отличие от подавляющего большинства других тьюринговских и тем более нобелевских лауреатов, остающихся после получения наград в своих лабораториях, эти трое и их ближайшие сотрудники вышли в мир бизнеса, продолжая свои исследования в сотрудничестве с крупнейшими компаниями Google, Facebook, другими крупными вендорами, многие создали свои собственные предприятия.

Нельзя исключать, что восхождение ко всемирной славе, по своей стремительности сравнимое с превращением Золушки, стало неожиданностью для них самих, ничто из того, чем они занимались 20 лет назад, не могло этого предвещать. В роли феи оказалась совсем небольшая по численности канадская благотворительная организация CIFAR (Canadian Institute for Advanced Research), выступающая в роли распорядителя средств, выделяемых правительством Канады и провинции Квебек с 1982 года. Свою миссию CIFAR видит в периодической концентрации средств и внимания на какой-то актуальной программе, привлекая для этой цели временные немногочисленные коллективы специалистов из разных стран. Время жизни каждой из программ составляет 10–15 лет, их было порядка полутора десятков, но самой известной из них, принесшей известность CIFAR, стала Neural Computation & Adaptive Perception program, открытая в 2004. К ней были привлечены нынешние тьюринговские лауреаты, а также специалисты по смежным специальностям: в том числе биологи, психологи, физики. Не будь этого импульса, на подиуме могли бы оказаться иные люди.

Спонсирование со стороны CIFAR позволило Хинтону, создававшему «временный трудовой коллектив», привлечь Лекуна и Бенджо с которыми он был связан общими научными интересами с конца 80-х. Сейчас трудно представить, что тогда исследования в области нейронных сетей представляли интерес только для чрезвычайно узкого круга, как их тогда называли, заговорщиков (cabal-like group), а их проекты вероотступническими (renegade). В те скудные времена (lean times) никто не верил будущее нейронных сетей.

  • Читать дальше
  • 1
  • ...
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: