Шрифт:
Для хранения электрического заряда применяют конденсаторы. Емкостью конденсатора называется количество заряда, которое он может удерживать на единицу разности потенциалов. Для конденсатора емкостью С и потенциалом V удерживаемый заряд Q = CV. Единицей емкости служит фарад (Ф), равный 1 кулону на вольт (Кл/В). Емкость обычных конденсаторов, используемых в цепях, в основном варьируется от 0,001 Ф до миллионных долей фарада. Часто электроемкость измеряют в микрофарадах (мкФ), при этом 1 мкФ = 10– 6 Ф.
Простейший конденсатор состоит из двух изолированных пластин, параллельных друг другу. Если пластины подсоединить к батарее, то с одной на другую потекут электроны. Одна пластина приобретет отрицательный заряд, поскольку получит электроны, а другая приобретет положительный заряд, потеряв их. Таким образом, пластины приобретут заряды, равные по величине, но противоположные по знаку. Количество накопленного конденсатором заряда равно количеству заряда на любой из пластин.
Энергия хранится в конденсаторе до тех пор, пока он заряжен. Она освобождается, когда конденсатор разряжается. К примеру, если заряженный конденсатор подсоединить к электрической лампе, электроны с отрицательно заряженной пластины потекут через лампу на положительно заряженную пластину. Накопленного заряда может хватить на то, чтобы лампа на некоторое время загорелась. Для конденсатора емкостью С с потенциалом V накопленная энергия равна 1/2СV2.
Конденсаторы применяют в цепях задержки (реле времени), в блоках настройки, сетевых фильтрах и блоках питания. Усиление и ослабление тока, заряда и напряжения в цепях с постоянным током, таких, как реле времени, контролируется конденсатором, последовательно соединенным с резистором и переключателем. Конденсатор разряжается со скоростью, зависящей от емкости С и сопротивления R резистора. Постоянной времени RC называется промежуток времени, за который сила тока уменьшается на 37 % по сравнению с начальным уровнем при разрядке конденсатора в цепи постоянного тока.
См. также статью «Разность потенциалов и мощность».
ЭЛЕКТРИЧЕСКОЕ ПОЛЕ 1 — НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ
Электрическое поле представляет собой область, окружающую заряженный объект, в которой на другой заряженный объект действует сила притяжения или отталкивания. Силовые линии электрического поля — линии, вдоль которых двигались бы точечные заряды в свободном состоянии.
Напряженностью электрического поля Е в данной точке электрического поля называется отношение силы, действующей на точечный положительно заряженный объект, к величине его заряда. Напряженность электрического поля измеряют в ньютонах на кулон (Н/К) или в вольтах на метр (В/м). Отсюда следует, что сила F, действующая на точечный заряд q в данной точке поля, равна произведению qE, где Е — напряженность электрического поля в данной точке.
Между двумя противоположно заряженными пластинами, расположенными на определенном расстоянии, существует однородное электрическое поле. Силовые линии параллельны друг другу и перпендикулярны пластинам. Поскольку поле однородно, его напряженность везде одинакова по абсолютной величине и направлению. Потенциал увеличивается равномерно от отрицательной до положительной пластины вдоль силовой линии. Для разности потенциалов Vр между пластинами работа по переносу точечного заряда q от одной пластины к другой равна qVr, отсюда сила F, действующая на q, равна отношению проделанной работы к расстоянию qVp/d, где d — расстояние между пластинами. Отсюда получаем формулу для напряженности электрического поля:
Е = F/q = Vp/d.
Точечный заряд окружает радиальное электрическое поле. Силовые линии направлены от заряда, если он положителен, и к заряду, если он отрицателен. Представим себе частицу с зарядом q, расположенную в электрическом поле, созданном частицей с гораздо большим зарядом Q. Сила взаимодействия двух зарядов согласно закону Кулона:
F = Qq/4??0r2,
где ?0 — абсолютная диэлектрическая проницаемость, r — расстояние между двумя частицами. Следовательно, напряженность электрического поля заряда Q в данной точке по отношению к заряду q:
Е = F/q = Q/4??0r2.