Шрифт:
Сложность в создании такого механизма передачи заряда состоит, во-первых, в создании в воде кластеров в виде цепочек, а во-вторых, в проблеме блокировки и фиксации крайнего иона водорода. Если удаленный ион водорода не фиксировать, то в цепочке может пойти обратная реакция релаксации и кластер вернется в первоначальное состояние.
При более подробном рассмотрении видно, что перемещается не электрон, а подвижная водородная связь. Выражаясь на языке твердого тела, на рисунке 6а создается дефект, который впоследствии перемещается по цепочке с ее дальнейшей релаксацией. Если обратить внимание на рисунок 6д, то видно, что на правом краю цепочки получился такой же дефект, что был на левом конце цепочки рисунка 6а. Очевидно, что иметь такой дефект крайней правой (да и любой другой) молекуле воды крайне неудобно, из-за этого и началась перестройка, поэтому электрон с такой цепочки будет отдаваться во внешнюю среду. Как писалось раньше, при подключении такого кластера молекул воды к электрической цепи, мы будем получать свободный носитель в этой цепи.
В описанном выше процессе существует много тонкостей. Разберем подробнее изменения происходящее в цепочке. Видно, что при каждом переходе водородной связи происходит перестройка молекул воды. Если на рисунке 6а все атомы водорода были ориентированы в одну сторону, то к рисунку 6д их ориентация полностью меняется. В действительности такая перестановка атомов водорода будет, скорее всего, сопровождаться лишь поворотом молекулы и небольшим изменением угла между связями. По энергии оба состояния почти одинаковы, однако между ними существует энергетических барьер. Для преодоления этого барьера должно быть достаточно энергии первоначальной деформации крайней левой молекулы, иначе реакция просто не пойдет.
Второе изменение цепочки будет связано с уходом электрона с крайнего правого атома на рисунке 6д. Очевидно, что после ухода электрона связи крайней правой молекулы станут нескомпенсированными, и там, скорее всего, произойдет перестройка от эр-гибридизированного состояния к более простому. Однако неизвестно, будет ли конечное состояние энергетически более выгодно. Из всего выше сказанного следует вывод, что первоначальной энергии деформации цепочки ионом водорода должно хватить на изменение ориентации молекул воды и на перестройку крайней правой молекулы, с которой уйдет некомпенсированный электрон. Даже если это условие будет выполнено, во время всей реакции должна поддерживаться водородная связь с ионом водорода на левом конце, и она ни в коем случае не должна переходить в молекулярную. Данная проблема может быть решена различными способами, например, ион водорода можно заменить ионом щелочного металла, который легче контролировать. Еще одним решением было бы создание специальной среды на одном (левом) краю ленточного кластера, где атомы водорода ионизировались бы, а потом вступали бы в реакцию с кластером.
Стоит отметить тот факт, что впечатление, которое может сложиться, будто на правом конце цепочки генерируется отрицательный заряд неверно. Первоначально заряд создался на левом конце цепочки, а только потом передался на правый. Скорее всего затраты на первоначальное создание заряда превысят выигрыш в энергии от его получения на противоположном конце кластера. Вероятно, что создание генераторов электронов на кластерах воды невыгодно. С другой стороны, сгенерированный заряд передается без потерь энергии в цепочке, надо только создать избыточную энергию деформации на одном краю кластера, достаточную для инициализации процесса. С этой точки зрения, затраченная энергия будет расходоваться намного эффективней, чем при передаче заряда по обыкновенным металлическим проводам, особенно на большие расстояния.
Проведем аналогию между проводимостью в металлах и проводимостью водных кластеров. Во-первых следует сразу отметить, что описанный эффект не относится к эффекту сверхпроводимости. Сверхпроводимость — это коллективный эффект, свойственный зарядам с целым спином, сопровождающийся Бозе-конденсацией. В нашем случае передается только один электрон, с полуцелым спином, поэтому ни о какой конденсации не может быть и речи. С другой стороны эффект идеальной проводимости при температуре абсолютного нуля намного ближе к описываемым здесь процессам. При идеальной проводимости носителями заряда являются простые электроны, которые не рассеиваются ни на тепловых колебаниях решетки, ни на примесях, из-за чего сопротивление металла становится равным нулю. В нашем случае носителем заряда тоже является электрон, который переносится в водном кластере. Кластер образовался так, что в нем естественным образом нет никаких примесей. Рассеяние на тепловых колебаниях не происходит потому, что двигается не свободный электрон в решетке, а перестраивается сама «решетка» кластера — двигается водородная связь. В металле создается разность потенциалов, а в нашем случае деформация кластера тоже является методом создания потенциальной энергии.
Отличительной чертой является то, что по одной цепочки может передаваться только один электрон, но с другой стороны этот процесс происходит при комнатной температуре. Именно возможность передачи электрического тока без сопротивления при комнатной температуре оправдывает затраты энергии, которые могут возникнуть при выполнении данной задачи.
Теперь обратим внимание на одну из основных проблем — создание стабильных водных ленточных кластеров. Создать сами ленточные кластеры можно с помощью взаимодействия воды с электромагнитным и электрическим полями. Если магнитное поле в основном применяется для создания круговых кластеров (рис. 3), то электрическое поле может быть применено для создания протяженных цепочек ленточных кластеров воды.
Проблема заключается в другом: некоторые теоретические исследования говорят о том, что ленточные кластеры имеют намного менее стабильную структуру, чем объемные простые структуры типа пентамеров и гексамеров. Если последние могут существовать в естественных условиях более нескольких дней или даже недель, то жизнь ленточных кластеров намного меньше. Это обусловлено тем, что время жизни простой водородной связи очень мало, в объемных же симметричных системах происходит усреднение между параметрами стабильной молекулярной связи и водородной. Протяженные ленточные кластеры в целом центральной симметрией не обладают (как впрочем и большие объемные конгломераты размером более 100А°). Из-за этого эти кластеры легко разрушаются флуктуациями, в том числе и тепловыми.
Для стабильного существования ленточных кластеров надо создавать специальные условия. Одним из таких условий является температурный режим, который в нашем случае совпадает с нормальными жизненными условиями (температура ниже 50 °C). Вторым условием является создание специальной поддерживающей структуры. Проведем еще одну аналогию для пояснения этого вопроса.
В настоящие время в физике наноструктур широкое распространение получают фуллерены типа С60. Было сделано открытие, показавшее, что соединения фуллеренов с некоторыми металлами являются высокотемпературными сверхпроводниками. При попытке создать новые фуллерены с температурой сверхпроводящего перехода близкой к комнатной было выяснено, что максимальной температурой перехода обладали бы еще не синтезированные цепочки из самых маленьких фуллеренов С2О [6]. К сожалению, также как и в нашем случае, такие цепочки, метастабильны. Для увеличения их стабильности было предложено следующее решение: упаковать их в специальные нанотрубки, которые не нарушали бы структуру цепочек, а поддерживали бы ее.