Вход/Регистрация
Интернет-журнал "Домашняя лаборатория", 2007 №8
вернуться

Журнал «Домашняя лаборатория»

Шрифт:

В связи с быстрым развитием технологии смешанной аналогово-цифровой обработки сигналов устройства на базе DSP с высокой степенью интеграции, появляющиеся на рынке в настоящее время (например ADSP-21ESP202), имеют помимо DSP-ядра интегрированные АЦП/ЦАП, что снимает проблему организации интерфейса между отдельными компонентами. Дискретные АЦП и ЦАП теперь оснащаются интерфейсами, специально предназначенными для связи с DSP, и тем самым минимизируют или устраняют необходимость внешней поддержки интерфейса или применения интерфейсной логики. Высокопроизводительные сигма-дельта-АЦП и ЦАП в настоящее время выпускаются в одном корпусе (такое комбинированные решение называется КОДЕК или КОдер/ДЕКодер), например, AD73311 и AD73322. Данные устройства также разработаны с учетом минимальных требований к интерфейсной логике при работе с наиболее распространенными DSP-процессорами. В настоящей главе рассматриваются проблемы, связанные с передачей и синхронизацией данных при организации различных интерфейсов.

ОРГАНИЗАЦИЯ ПАРАЛЛЕЛЬНОГО ИНТЕРФЕЙСА с DSP-ПРОЦЕССОРАМИ: ЧТЕНИЕ ДАННЫХ ИЗ АЦП, ПОДКЛЮЧЕННОГО С ОТОБРАЖЕНИЕМ В АДРЕСНОЕ ПРОСТРАНСТВО ПАМЯТИ

Подключение АЦП или ЦАП через быстрый параллельный интерфейс к DSP-процессору требует понимания специфики процессов чтения данных DSP-процессором из периферийных устройств (АЦП), а также записи данных процессором в периферийные устройства (ЦАП) при подключении данных устройств в адресное пространство памяти. Вначале мы рассмотрим некоторые основные требования к временным параметрам сигналов, используемых для чтения и записи данных. Необходимо отметить, что принципы, представленные здесь на примере доступа к АЦП и ЦАП, применимы также при чтении и записи в/из внешней памяти.

Блок-схема типичного параллельного интерфейса DSP-процессора с внешним АЦП показана на рис 8.1. Эта диаграмма сильно упрощена и показывает только сигналы, используемые для чтения данных из внешнего устройства, подключенного в адресное пространство памяти.

Временная диаграмма цикла чтения для процессоров семейства ADSP-21XX показана на рис. 8.2.

В этом примере подразумевается, что АЦП производит выборку с постоянной частотой, которая задается внешним тактовым генератором, асинхронно по отношению к внутренней тактовой синхронизации DSP-процессора. Использование отдельного задающего генератора для АЦП является предпочтительным, поскольку сигнал внутреннего генератора DSP-процессора может иметь высокий уровень помех и фазовый шум (jitter), который в процессе аналого-цифрового преобразования приведет к увеличению уровня шумов АЦП.

Тактовый импульс задающего генератора на входе "старт преобразования" (convert start) АЦП инициирует процесс преобразования входных данных (шаг N 1). По переднему фронту этого импульса внутренняя схема выборки-хранения АЦП переключается из режима выборки в режим хранения и таким образом начинается процесс преобразования. После выполнения преобразования на выходе АЦП выставляется строб преобразование выполнено (шаг N 2). Когда этот сигнал поступает на вход запроса прерывания DSP-процессора (), начинается процесс чтения данных из АЦП. Далее процессор выставляет на шине адрес периферийного устройства, инициировавшего запрос на прерывание (шаг N 3). В то же самое время процессор переводит в активное состояние сигнал доступа к памяти () (шаг N 4). Две внутренние шины адреса в процессоре ADSP-21XX (шина адреса памяти программ и шина адреса памяти данных) совместно используют внешнюю шину адреса, а две внутренние шины данных (шина данных памяти программ и шина данных памяти данных) совместно используют одну внешнюю шину данных. Сигналы выбора памяти начальной загрузки (), выбора памяти данных (), выбора памяти программ () и выбора памяти устройств ввода-вывода () указывают, для какой памяти в данный момент используются внешние шины. Эти сигналы обычно используются для разрешения внешней дешифрации адреса, как показано на рис. 8.1. Выходной сигнал дешифратора адреса подается на вход chip select выбора периферийного устройства (шаг N 5).

Сигнал чтения памяти (memory read, ) выставляется через промежуток времени tASR после активации сигнала (шаг N 6). Чтобы полностью использовать преимущество высокой скорости DSP-процессора, сумма времени задержки дешифрации адреса и времени включения периферийного устройства после подачи сигнала выбора (chip select) не должна превышать время tASR. Сигнал чтения памяти (memory read, RD) остается активным (низкий логический уровень) в течение времени tRР. Этот сигнал используется для перевода в активное состояние параллельного выхода данных периферийного устройства (шаг N 7). Сигнал обычно подключается к соответствующему выводу периферийного устройства, называемому сигналом разрешения выхода или чтения (output enable или read). Восходящий (задний) фронт сигнала RD используется для ввода данных с шины в DSP-процессор (шаг N 8). После появления восходящего (заднего) фронта сигнала данные на шине должны удерживаться периферийным устройством в течение времени tRDH, называемого временем удержания данных. Для большинства процессоров семейства ADSP-21XX это время равно нулю.

Основные требования к временным параметрам периферийного устройства показаны на рис. 8.3. Все значения даны для процессора ADSP-2189M, работающего на тактовой частоте 75 МГц.

ОСНОВНЫЕ ТРЕБОВАНИЯ ПРИ ЧТЕНИИ ИЗ ПЕРИФЕРИЙНОГО УСТРОЙСТВА (ПУ) ЧЕРЕЗ ПАРАЛЛЕЛЬНЫЙ ИНТЕРФЕЙС

• Шина данных периферийного устройства должна поддерживать высокоимпедансное Z-состояние

• Время декодирования адреса и время включения периферийного устройства не должно превышать время tASR установки процессором адреса и сигнала выбора памяти (0.325 нc минимум для процессора ADSP-2189M)

• Для того, чтобы осуществить доступ без режима ожидания, время от спадающего (переднего) фронта сигнала чтения до момента достоверного установления данных не должно превышать tRDD (составляет 1.65 нc для процессора ADSP-2189М при работе на частоте 75 МГц), иначе необходимо программно обеспечить режим ожидания или снизить частоту работы процессора

• На выходе АЦП должны поддерживаться достоверные данные в течение времени tRDH после восходящего (заднего) фронта сигнала чтения (время tRDH равно нулю для процессора ADSP-2189M)

• Периферийное устройство должно работать при как можно меньшей длительности строба tRP (3.65 нc для процессора ADSP-2189M при работе на частоте 75 МГц), иначе необходимо программно обеспечить режим ожидания или снизить частоту работы процессора

Рис. 8.3

Параметр tRDD определяет время, требуемое для доступа к данным периферийного устройства. В случае процессора ADSP-2189M минимальная длительность tRDD составляет минимум 1.65 нс на частоте 75 МГц. Если требуемое время доступа к периферийному устройству больше, необходимо использовать циклы ожидания или уменьшить тактовую частоту процессора. Это довольно обычная ситуация при подключении внешней памяти или АЦП к быстрым DSP-процессорам. Соотношения между этими временными параметрами для ADSP-2189M показаны в виде уравнений на рис. 8.4. Обратите внимание, что данные характеристики зависят от тактовой частоты процессора DSP.

  • Читать дальше
  • 1
  • ...
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353
  • 354
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: