Шрифт:
Следующий после АЦП цифровой процессор обработки принимаемого сигнала (RSP) выполняет функции канальной настройки, фильтрации и прореживания, необходимые для выделения базовой частоты и обработки ее в цифровом сигнальном процессоре (DSP). Функции DSP выполняет AD6624 — четырехканальный процессор с производительностью 65 MSPS, поддерживающий стандарты GSM, IS 136 и другие узкополосные стандарты. AD6624 имеет четыре независимо программируемых канала, что позволяет легко изменять характеристики беспроводного интерфейса по мере необходимости. Такой подход также дает возможность параллельного включения AD6624S для увеличения количества каналов. AD6624 может быть также сконфигурирован для поддержки EDGE-расширений стандартов GSM и IS 136.
Четырехканальный цифровой процессор обработки передаваемого сигнала AD6622 обрабатывает сигнал основной частоты, поступающий с DSP. Он выполняет всю необходимую сигнальную обработку для вывода данных на ЦАП AD9772. Каждый канал может быть независимо запрограммирован таким образом, чтобы обеспечить необходимую фильтрацию канала для большинства беспроводных стандартных интерфейсов. AD6622 поддерживает IS95 и WCDMA стандарты и может быть использован [3] для объединения произвольного числа каналов на одном 18-разрядном цифровом выходе.
Управление электродвигателями
Асинхронный двигатель известен достаточно давно, благодаря простоте конструкции, дешевизне, высокой эффективности и надежности, однако область его применения была ограничена из-за невозможности управления его динамическими характеристиками, например, скоростью вращения, вращающим моментом и реакцией на изменяющуюся нагрузку. Однако достижения в области цифровой обработки сигналов и технологии создания смешанных цифроаналоговых интегральных схем открывают новые горизонты в использовании асинхронных двигателей переменного тока. Изготовители, беспокоящиеся об эффективности использования электроэнергии и ее экономии, могут уменьшить затраты и время выхода на рынок широкого диапазона изделий — от индустриальных двигателей до электромоторов для электромобилей и локомотивов, — с помощью стандартной системы так называемого векторного управления, состоящей из комплекта интегральных микросхем и среды разработки.
Вряд ли Никола Тесла (1856–1943), изобретатель асинхронного двигателя, мог предвидеть, что эта «рабочая лошадка промышленности» получит второе рождение в виде двигателя нового класса, который окажется вполне конкурентоспособным в большинстве индустриальных приложений.
Перед обсуждением преимуществ векторного управления необходимо дать основные положения принципа функционирования различных типов электрических двигателей в обычном использовании.
До недавнего времени области применения электромоторов, связанные с сервоуправлением, например, — с переменной реакцией на динамические нагрузки, постоянством вращающего момента или регулированием частоты вращения в широком диапазоне — были исключительно прерогативой коллекторных двигателей постоянного тока и синхронных двигателей с постоянными магнитами. Основная причина такого предпочтения заключалась в наличии понятных и отработанных схем управления. В то же время, несмотря на легкость управления, коллекторные двигатели постоянного тока имеют несколько недостатков: их щетки изнашиваются и должны регулярно заменяться, коллекторы также изнашиваются и могут быть повреждены в случае неправильной установки щеток, механический контакт «щетки-коллектор» является источником загрязнений и искрения, что повышает риск пожара при наличии горючих материалов.
Появление мощных инверторов, способных управлять столь же мощными двигателями, привело к практическому использованию синхронных двигателей постоянного тока с постоянными магнитами (PMSM) в приложениях, требующих сервоуправления. Но, наряду с устранением многих проблем механического характера, присущих коллекторным двигателям постоянного тока, эти двигатели потребовали более сложных схем управления и выявили ряд собственных недостатков. Обладая высокой стоимостью, PMSM-двигатели в большинстве своем отличаются высоким моментом инерции ротора, что ограничивает их применение в приложениях, где требуется высокая скорость вращения, из-за механических ограничений конструкции ротора [4].
В 60-х годах развитие теории управления привело к созданию теории косвенного полеориентированного управления, ставшей основой динамического управления асинхронными двигателями переменного тока. Косвенное полеориентированное управление использует теорию эталонных фреймов, описывающую преобразование изменяющегося фазового положения обмоток электродвигателя из одного фрейма в другой эталонный фрейм. Продуманный выбор математической модели позволяет значительно уменьшить сложность математической модели механизма. Хотя эти методы первоначально создавались для анализа и моделирования двигателей переменного тока, к настоящему времени они стали неотъемлемой частью инструментария цифрового управления такими механизмами. Более того, цифровые методы управления расширены до управления токами в обмотках и вращающим моментом электромеханизмов, что само по себе невозможно без компактных, корректных моделей электродвигателей.
Описываемая теория математических моделей равно применима и к синхронным машинам типа синхронных двигателей с постоянными магнитами (PMSM). Этот двигатель иногда называют синусоидальным вентильным двигателем, или вентильной машиной переменного тока, и он очень широко используется в высокоэффективном сервоприводе.
Вследствие интенсивных математических вычислений, необходимых для косвенного полеориентированного управления, теперь обычно называемого векторным управлением или теорией эталонных фреймов, практическое использование этой теории было невозможно на протяжении долгих лет. Доступные аппаратные вычислительные средства не могли осуществлять высокоскоростное позиционирование положения ротора и выполнять вычисления в режиме реального времени динамического потока векторов. Доступность современных точных оптических кодеров, биполярных транзисторов с изолированным затвором (IGBT), высокоскоростных резольверов и быстродействующих цифровых сигнальных процессоров (DSP) выдвинула векторное управление на передний край работ по использованию преимуществ, свойственных асинхронному двигателю переменного тока.
Упрощенная блок-схема системы управления асинхронного двигателя переменного тока показана на рис. 9.21.
Входными данными для контроллера являются токи обмоток двигателя (обычно трехфазные) и положение и скорость ротора. Датчики на основе эффекта Холла очень широко используются для контроля токов и с помощью пространственно-цифрового преобразователя (RDC) позволяют контролировать положение ротора в пространстве, а также его скорость. Цифровой сигнальный процессор используется для вычисления в режиме реального времени величин векторов, которые необходимы для генерации выходного сигнала управления инвертором преобразователя мощности. Преобразования, необходимые для преобразования эталонного фрейма и для векторного управления, также выполняются с помощью DSP.