Шрифт:
Большой интерес к низковольтным DSP отчетливо наблюдается в смещении процента продаж между 5 В и 3,3 В микросхемами. Объем продаж 3.3-вольтовых DSP вырос более чем вдвое по сравнению с остальными DSP (30 % для всех DSP, 70 % — устройства с напряжением питания 3.3 В). Этот процесс будет продолжаться, так как огромный и постоянно растущий рынок портативных устройств потребляет цифровые сигнальные процессоры, которые обладают всеми чертами низковольтных цифровых процессоров.
С одной стороны, низковольтные ИС работают при малой потребляемой мощности, имеют меньшие размеры и более высокие скорости. С другой стороны, низковольтные ИС часто должны работать совместно с ИС, которым необходимо большее напряжение питания VDD, из-за чего возникают проблемы совместимости. Хотя низкое рабочее напряжение означает уменьшение размаха сигнала, и следовательно, шум переключения становится меньше, но для микросхем с низким напряжением питания уменьшается допустимый для нормальной работы устройства уровень шума (запас помехоустойчивости).
НИЗКОВОЛЬТНЫЕ ИС СО СМЕШАННЫМИ СИГНАЛАМИ
• Малая потребляемая мощность для применения в портативных устройствах
• ИС с напряжением питания 2.5 В могут работать от двух щелочных элементов
• Высокое быстродействие КМОП-процессоров, меньшие размеры, меньшее напряжение пробоя
• Несколько напряжений питания в системе: +5 В, +3.3 В, +2.5 В, напряжение питания ядра процессора +1.8 В, напряжение питания аналоговой части
• Между ИС разных стандартов требуется интерфейсы
• Меньшая амплитуда напряжения сигнала образует меньше шума при переключении
• Меньший запас помехоустойчивости
• Меньшее напряжение питания в аналоговых схемах приводит к уменьшению размаха сигнала и увеличивает чувствительность к шумам (но это предмет целого семинара!)
Рис. 10.1
Популярность устройств с напряжением питания 2.5 В может быть отчасти объяснена их способностью работать от двух щелочных элементов типа АА. На рис. 10.2 показаны характеристики щелочного элемента при различной величине нагрузки. (Приложение 2).
Обратите внимание, что при токе нагрузки 15 мА напряжение остается на уровне выше 1.25 В (2.5 В для двух последовательно соединенных элементов) в течение приблизительно 100 часов. Поэтому ИС, которые могут успешно работать при низком потребляемом токе и напряжении питания 2.5 В±10 % (2.25 В-2.75 В), особенно полезны для портативной аппаратуры. Цифровые процессоры, обладающие низким соотношением мА/MIPS (потребляемый ток/производительность) и имеющие периферию, интегрированную на одном чипе, как например, ADSP-218x L или М-серии, также рекомендованы для применения в портативных устройствах.
Для того чтобы разобраться в вопросах совместимости и взаимодействия друг с другом микросхем с различными напряжениями питания VDD, полезно для начала взглянуть на структуру типичной логической ячейки КМОП, которая показана на рис. 10.3.
Обратите внимание, что выходной драйвер состоит из МОП-транзистора с каналом р-типа (PMOS) и МОП-транзистора с каналом n-тииа (NMOS). Когда на выходе высокий логический уровень, транзистор PMOS подключает выход каскада к шине питания +VDD через своё небольшое внутреннее сопротивление (Ron), транзистор NMOS в это время выключен. Когда на выходе низкий логический уровень, транзистор NMOS подключает выход к земле через своё внутреннее сопротивление, а транзистор PMOS в это время выключен. Сопротивление Ron выхода имеет величину от 5 до 50 Ом в зависимости от размеров транзисторов; эти размеры также определяют величину допустимого выходного тока.
Типичная логическая ИС обладает отдельными цепями питания и земли для выходного драйвера и для остальной части схемы (включая пре-драйвер). Это делается для того, чтобы обеспечить "чистое" напряжение питания, и таким образом уменьшить влияние шума и помех по шине земли на входные и выходные сигналы. Это особенно важно, т. к. обеспечиваемая конструктивно дополнительная устойчивость и совместимость микросхем негативно влияет на характеристики драйверов входа/выхода, особенно при низких напряжениях питания.
На рис. 10.3 также изображены диаграммы-"столбики", на которых показаны минимальные и максимальные требуемые уровни входного и выходного напряжения, достоверно обеспечивающие высокий или низкий логические уровни. Имейте в виду, что для ИС, выполненных по технологии КМОП, реальные уровни сигналов на выходе определяются током нагрузки и внутренним сопротивлением RON выходных транзисторов. Для небольшой нагрузки уровень выходного логического сигнала очень близок к 0 В или +VDD. С другой стороны, логические пороги на входе определяются входной схемой ИС.
На диаграмме-"столбике", соответствующем входу, имеется три части. Нижняя часть показывает диапазон входного сигнала, который воспринимается как низкий логический уровень. В случае с TTЛ-логикой с напряжением питания 5 В, этот диапазон будет соответствовать значению напряжения от 0 В до 0.8 В. Средняя часть показывает диапазон входного напряжения, в котором уровень сигнала не воспринимается гарантированно как низкий или высокий. Верхняя часть соответствует входному сигналу, который воспринимается как высокий логический уровень. В случае 5-вольтовой TTЛ-логики, этот сигнал будет иметь напряжение от 2 до 5 В.