Вход/Регистрация
Интернет-журнал "Домашняя лаборатория", 2007 №5
вернуться

Журнал «Домашняя лаборатория»

Шрифт:

Рис. 23

Оценка возможного вклада вертикальных проводников в поворот статора, рассчитанная по формуле В = М/Pm (где М — крутящий момент, a Pm — магнитный момент катушки) показывает, что для создания момента в 0.16 гс см (83 х 35 мм вертикальная рамка, содержащая 120 витков) при токе в 1 А внешнее магнитное поле должно достигать примерно 4 Гс (горизонтальная и вертикальная составляющие поля Земли равны порядка 0.16 и 0.55 Гс соответственно).

Более точная оценка внешнего магнитного поля была проведена с помощью цилиндрической катушки с горизонтальной осью (Ф = 45 мм, N = 300 витков), подвешенной на том же торсионе, лазера и зеркала, закрепленного на торсионе в месте его закрепления на катушке. Измерения показали, что внешнее магнитное поле в лаборатории составляет порядка 3.5 Гс и, таким образом, вышеуказанный поворот статора (без ротора) происходит во внешнем магнитном поле, вызванным индустриальными наводками. Если конструкция статора не имеет вертикальных проводников (они практически не участвуют в создании ЭДС и не существенны для работы генератора), то этот эффект должен отсутствовать.

Надо отметить, что этот эффект никак не влияет на представленные выше результаты измерения моментов ротора и статора, так как для тока 0.1 А отклонение, вызванное этим внешним полем, составит всего 0.2 градуса.

Далее, ротор и статор второго генератора были жестко сцеплены друг с другом и подвешены на том же торсионе. Угловое отклонение при токе в 1 А составило от 1 до 7 градусов, в зависимости от положения статора относительно направления внешнего поля. Это свидетельствует о том, что и в этом случае статор поворачивается во внешнем поле. Т. е. связанная система ротор — статор фактически не поворачивается. Но, если бы существовал нескомпенсированный статический момент, то эта система должна была повернуться. В то же время, надо заметить, что вышеуказанный эффект (различие моментов) проявляется в динамике — поворот ротора относительно статора и наоборот.

Таким образом:

• Данная конструкция генератора, несомненно работает, полувитки, расположенные по окружности, передают ротору крутящий момент и, следовательно, тангенциальную составляющую силы.

• Напряжение, вырабатываемое генератором пропорционально числу полувитков, длине полувитка и скорости изменения магнитной индукции в месте расположения полувитка (dB/dt).

• Проведенные испытания генератора и обращенного генератора (мотора) подтверждают выводы сделанные в предыдущих разделах о необходимости модификации законов Фарадея и Ампера.

• Неравенство моментов ротора и статора не может быть объяснено методическими и инструментальными ошибками эксперимента и этот возможный эффект нуждается в дополнительном исследовании, тем более, что жестко связанная система ротор — статор не поворачивается. Но тут надо отметить неравноправность относительных движений проводника и магнита, отмеченную выше. При этом, в данных экспериментах в первом случае ротор (магнит) поворачивается относительно неподвижного статора и, наоборот, во втором. В разделе

5, на примере униполярного генератора, было показано, что движение магнита относительно неподвижного проводника и движение проводника относительно неподвижного магнита — это не одно и то же, в частности, в первом случае лоренцева ЭДС не наводится. Таким образом, можно ожидать подобных эффектов и в данном случае.

• Наблюдаемое самопроизвольное вращение статора может быть объяснено внешними магнитными полями, в которых статор поворачивается (как рамка с током) при пропускании тока через обмотку. Это внешнее поле, вызванное индустриальными наводками, было обнаружено и составило порядка 3.5 Гс. В то же время, это поле, в связи с его малостью, никак не сказывается на результатах измерений.

10. Силовое взаимодействие источников магнитного поля

Если представить магнит как систему проводников с током, создающих циркуляцию магнитного поля (это, в общем-то, соответствует современным представлениям), то в кольцевом магните существуют две оси циркуляции (Рис. 24), внутренняя и внешняя, создающие взаимно противоположные циркуляции, при этом, границей раздела их магнитных силовых линий является плоскость полюсов.

Рис. 24

Для однородного кольцевого магнита оси циркуляции и полюса являются окружностями (Рис. 24). При этом, оси циркуляции находятся внутри магнита (в данном случае лежат в плоскости, разделяющей магнит пополам), а полюса представляют собой окружности, лежащие сверху и снизу на поверхности магнита. Если диаметр внутреннего отверстия кольцевого магнита уменьшать, то, в пределе, внутренняя ось циркуляции выродится в точку и плоскость полюсов превратиться в линию, совпадающую с осью диска (цилиндра). Можно видеть, что и у плоского магнита, поляризованного по длине или толщине, также существуют две оси циркуляции. Таким образом, у постоянных магнитов разных конфигураций существуют две оси циркуляции, одна из которых вырождается в точку для осесимметричных цилиндрических магнитов, не содержащих внутренних полостей. Формально, ось циркуляции (для кольцевого магнита) можно представить, как кольцевой проводник, в котором постоянно течет ток (см. раздел 7). Для кольцевого ферритового магнита этот «ток» составляет порядка 40 А.

  • Читать дальше
  • 1
  • ...
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: