Шрифт:
Но последовательное описание явления униполярной индукции дается лишь теорией относительности. Рассмотрим, как это делается.
Поставим мысленный эксперимент: пусть мы имеем две системы отсчета. Одна лабораторная (сидим за столом и глядим на вращающийся магнит), другая — связанная с магнитом (собственная система отсчета). Вообразим себя сидящими на магните и вращающимися вместе с ним.
После того, как мы ввели две системы отсчета, и начинается самое интересное. В связанной с магнитом системе отсчета присутствует только постоянное магнитное поле. Магнит в этой системе неподвижен, и на его свободные электроны никакие силы не действуют. В магнитном поле движется только проводник, и Лоренцева сила действует только на его электроны. Именно она и создает электродвижущую силу (ЭДС), вызывающую электрический ток. Запомним это.
Теперь перейдем к лабораторной системе отсчета. Здесь внутри вращающегося магнита существует два поля — и магнитное, и электрическое. Электрическое компенсирует силу Лоренца, и полная сила, воздействующая на электроны, равна нулю. В неподвижном (в лабораторной системе отсчета) внешнем проводнике силы Лоренца нет, зато есть электрическое поле, создающее между полярной осью магнита и боковой поверхностью разность потенциалов, равную электродвижущей силе, о которой мы говорили, рассматривая собственную систему отсчета. Запомним и это!
А теперь зададим себе очень простой вопрос: как все обстоит на самом деле? Какие заряды создают электрическое поле, которое, как Афина из головы Зевса, вдруг является во всеоружии, но из ничего, из перехода от одной системы координат к другой.
Это ведь не квантовый мир с его эффектами Наблюдателя. Это самый что ни на есть макромир. Обыденный, повседневный. И в нем поле, порождающее токи весьма большой величины, берется ниоткуда. Из того, что присутствует в одной системе отсчета и отсутствует в другой.
Ответ на этот вопрос дает релятивистская теория. Дело в относительном характере деления единого электромагнитного поля на поле электрическое и магнитное. Которые зависят от той системы координат, в которой ведется наблюдение. И о чем, несмотря на сданные курсы электродинамики, обычно не осведомлено большинство обладателей инженерных дипломов постсоветских вузов.
Подробно и строго с явлением униполярной индукции можно познакомиться в книге Тамм И. Е., "Основы теории электричества" (М., 1966).
Мало кто знает и о существовании самих униполярных генераторов, в промышленном исполнении использующих, конечно, не постоянные магниты, а тороидальные катушки возбуждения. Для съема тока с подвижных частей часто используются устройства на основе жидкого металла.
Униполярные генераторы дают рекордные токи, в экспериментальных образцах до миллионов ампер, как правило, при невысоких напряжениях. Отсутствие пульсаций тока делает их весьма эффективными для питания электролизных установок, дуговых печей…
Узнать о последних достижениях в области униполярных генераторов по открытым зарубежным источникам автору не удалось. Дело в том, что униполярные генераторы весьма хороши для питания перспективных электромагнитных орудий сверхвысокой кинетической энергии (в опытных образцах, традиционно запитываемых от конденсаторных батарей большой мощности). А о роли, которая отводится таким орудиям как в перспективной космической ПРО, так и в системах более обычных вооружений бронетанковых, авиационных, хорошо известно.
Но это частности. Куда интереснее сам факт существования сугубо инженерного устройства, для описания которого необходима СТО.
ЭЛЕКТРОНИКА
Узлы электронных схем
Транзистор
1. Увеличение мощности транзистора.
Резисторы в цепях эмиттеров нужны для равномерного распределения нагрузки; уровень шумов уменьшается пропорционально квадратному корню из количества параллельно включённых транзисторов.
2. Защита от перегрузки по току.
Недостаток-снижение КПД из-за наличия датчика тока R.
Другой вариант — благодаря введению германиевого диода или диода Шоттки можно в несколько раз уменьшить номинал резистора R, и на нём будет рассеиваться меньшая мощность.