Вход/Регистрация
Нейросети. Обработка аудиоданных
вернуться

Картер Джейд

Шрифт:

3. Эти ошибки возводятся в квадрат, что позволяет избежать проблем с отрицательными и положительными ошибками, которые могут взаимно компенсироваться. Ошибки возводятся в квадрат, чтобы большим ошибкам присваивать больший вес.

4. Затем вычисляется среднее значение всех квадратов ошибок. Это среднее значение является итоговой MSE.

Формула MSE для одного примера (i) выглядит следующим образом:

MSE(i) = (Предсказанное значение(i) – Фактическое значение(i))^2

Для всего набора данных с N примерами формула MSE выглядит так:

MSE = (1/N) * ? (Предсказанное значение(i) – Фактическое значение(i))^2 от i=1 до N

Чем меньше значение MSE, тем ближе предсказания модели к фактическим данным, и, следовательно, модель считается более точной. Однако стоит помнить, что MSE чувствителен к выбросам и может быть неподходящим для задач, где ошибки в предсказаниях могут иметь разную важность.

–

Кросс

–

энтропия

:

Широко применяется в задачах классификации и измеряет разницу между распределением вероятностей

,

предсказанным моделью

,

и фактическими метками классов

.

Кросс-энтропия (Cross-Entropy) – это важная функция потерь, широко используемая в задачах классификации, особенно в машинном обучении и глубоком обучении. Она измеряет разницу между распределением вероятностей, предсказанным моделью, и фактическими метками классов в данных. Кросс-энтропия является мерой того, насколько хорошо модель приближает вероятностное распределение классов в данных.

Принцип работы кросс-энтропии заключается в сравнении двух распределений: предсказанных вероятностей классов моделью и фактических меток классов в данных. Её можно описать следующим образом:

1. Для каждого примера в наборе данных модель выдает вероятности принадлежности этого примера к разным классам. Эти вероятности могут быть представлены в виде вектора вероятностей, где каждый элемент вектора соответствует вероятности принадлежности примера к конкретному классу.

2. Фактичные метки классов для каждого примера также представляются в виде вектора, где один элемент вектора равен 1 (класс, к которому пример принадлежит), а остальные элементы равны 0.

3. Сравнивая вероятности, предсказанные моделью, с фактичными метками классов, вычисляется кросс-энтропия для каждого примера. Формула для вычисления кросс-энтропии для одного примера i выглядит так:

Cross-Entropy(i) = -? (Фактическая вероятность(i) * log(Предсказанная вероятность(i)))

Где ? означает суммирование по всем классам.

4. Итоговая кросс-энтропия для всего набора данных вычисляется как среднее значение кросс-энтропии для всех примеров. Это позволяет оценить, насколько хорошо модель соответствует фактичным данным.

Кросс-энтропия имеет следующие важные характеристики:

– Она может быть использована для многоклассовой и бинарной классификации.

– Она штрафует модель за неверные уверенные предсказания вероятностей, что позволяет сделать её более уверенной и точной.

– Она штрафует большие различия между фактическими метками и предсказанными вероятностями сильнее, что делает её чувствительной к выбросам.

Выбор кросс-энтропии как функции потерь в задачах классификации обусловлен тем, что она стимулирует модель предсказывать вероятности классов, что часто является необходимым в задачах классификации.

–

Категориальная кросс

–

энтропия

:

Используется в задачах многоклассовой классификации

,

где классы не взаимосвязаны

.

Категориальная кросс-энтропия (Categorical Cross-Entropy) – это функция потерь, которая часто применяется в задачах многоклассовой классификации, где классы не взаимосвязаны и каждый пример может быть отнесен к одному и только одному классу из набора классов. Эта функция потерь измеряет расхождение между вероятностным распределением, предсказанным моделью, и фактичными метками классов.

Применение категориальной кросс-энтропии в задачах многоклассовой классификации выглядит следующим образом:

1. Для каждого примера в наборе данных модель предсказывает вероятности принадлежности этого примера к каждому классу. Эти вероятности образуют вектор вероятностей, где каждый элемент соответствует вероятности принадлежности к одному из классов.

2. Фактичные метки классов для каждого примера также представляются в виде вектора, где один элемент равен 1 (класс, к которому пример принадлежит), а остальные элементы равны 0.

  • Читать дальше
  • 1
  • ...
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: