Шрифт:
Таким образом, изучение спектральной чувствительности и коэффициента собирания солнечных элементов исключительно полезно для дальнейшего улучшения свойств солнечных элементов, увеличения их КПД и, следовательно, расширения сферы их применения.
Глава 3
КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ
СОЛНЕЧНЫХ ЭЛЕМЕНТОВ
Методика измерения КПД
Для определения КПД солнечных элементов и батарей необходимо (так же как в случае любых других преобразователей излучения) измерить количество энергии излучения, поступающей на солнечный элемент, и количество электроэнергии, выработанной им. Проблема, однако, осложняется несколькими обстоятельствами: энергия поступает к элементу в форме солнечного излучения, спектральный состав и мощность которого продолжают уточняться даже для внеатмосферных условий, а характеристики наземного солнечного излучения чрезвычайно сильно зависят от состояния атмосферы и часто изменяются в течение весьма непродолжительных периодов времени;
создание имитаторов Солнца, копирующих по всем основным параметрам внеатмосферное или выбранное в качестве стандарта наземное солнечное излучение, представляет собой пока не решенную полностью научно-техническую задачу;
при разработке стабильных эталонных солнечных элементов для настройки имитаторов Солнца следует учитывать особенности оптических и электрофизических свойств каждого типа элементов, в частности их спектральной чувствительности;
при измерении выходных электрических параметров элементов и батарей необходимо иметь в виду сильное влияние последовательного сопротивления элементов и сопротивления измерительных приборов на получаемые значения.
Таким образом, определение КПД солнечных элементов и батарей представляет собой сложную комплексную проблему, и это выделило метрологию полупроводниковых преобразователей солнечного излучения в самостоятельной раздел исследований по фотоэлектричеству.
Основной параметр солнечных элементов и батареи — световая нагрузочная вольт-амперная характеристика — позволяет определить генерируемую электрическую мощность по произведению IoptUoht, оценить полноту использования потенциала запрещенной зоны по напряжению холостого хода; получить представление об уровне оптических и фотоэлектрических потерь по току короткого замыкания и коэффициенту заполнения вольт-амперной характеристики; рассчитать КПД преобразования солнечной энергии в электрическую по отношению мощности, генерируемой элементами и батареями, к мощности падающего солнечного излучения, которую можно измерить с помощью отградуированного эталонного солнечного элемента. Градуировка эталонного элемента заключается в определении абсолютного значения тока его короткого замыкания, например путем пересчета измерений абсолютной спектральной чувствительности на стандартный внеатмосферный или наземный солнечный спектр.
Качество солнечных элементов и батарей, количество дефектных элементов в батарее могут быть оценены также косвенными методами — по измерению прямой и обратной ветвей темновой вольт-амперной характеристики; по интегральному коэффициенту поглощения солнечного излучения поверхностью батареи, рассчитываемому исходя из результатов измерений спектральных коэффициентов отражения; по интегральному коэффициенту собственного теплового излучения поверхности батарей, различному у дефектных и высококачественных элементов; по яркости электролюминесценции (у солнечных элементов на основе арсенида галлия).
Измерения параметров солнечных элементов и батарей могут быть выполнены в лабораторных, натурных наземных и космических условиях по указанным выше методикам.
Рассмотрим ряд научно-технических вопросов, связанных с проблемой контроля качества, определения параметров солнечных элементов и батарей из различных полупроводниковых материалов и разнообразного практического применения, погрешностей измерения и прогнозирования характеристик элементов в процессе эксплуатации.
Имитаторы солнечного излучения
Имитаторы Солнца используются в различных областях науки и техники: при моделировании тепловых режимов космических аппаратов и испытании материалов на воздействие космических условий, в медицинских и биологических исследованиях, в растениеводстве, фотометрии, калориметрии, гелиотехнике. Известно множество разнообразных оптических схем и конструкций имитаторов Солнца, и среди них разработаны и успешно используются оригинальные имитаторы для измерения параметров солнечных элементов и батарей.
В идеальном случае имитаторы должны с наилучшим приближением воспроизводить все параметры солнечного излучения — параллельность лучей, стабильность во времени и равномерность освещения, спектральный состав, плотность потока. Однако такие приборы чрезвычайно сложны и дороги, параметры их светового потока все же отличаются от естественного солнечного, поэтому в зависимости от конкретного назначения создаются специализированные имитаторы. В установках, предназначенных для измерения характеристик солнечных элементов и батарей, меньше внимания уделяется достижению коллимации пучка для получения параллельности лучей, соответствующей солнечному потоку, и больше — созданию достаточно хорошего приближения к спектру излучения Солнца, обеспечению стабильности и однородности потока. Но и здесь подход может быть разным. В производстве при серийном изготовлении солнечных элементов применение имитаторов с точным воспроизведением спектра не всегда обязательно, особенно для относительных измерений, например, таких, как текущий контроль качества, сортировки элементов и их групп по электрическим параметрам, чтобы обеспечить малые потери на коммутацию после сборки батареи. Для этих целей можно подобрать имитатор с оптимальным соотношением между сложностью конструкции и точностью измерений.