Шрифт:
Наиболее удачно последняя конструкция реализована в солнечных элементах с рельефной структурой поверхности, схематически изображенной на рис. 4.2, б. Рельеф в данном случае создается, так же как при текстурировании, методом избирательного травления (например, в щелочи) пластины кремния с ориентацией (110). Легированный n+– слой[6] повторяет профиль поверхности. Геометрические размеры элементов рельефа могут задаваться в широких диапазонах значений. В образцах, изготовленных американскими специалистами, разработчиками этой рельефной конструкции солнечных элементов высота. H=100?150 мкм, шаг w?c?7–8 мкм. Рельефная фотоприемная поверхность обладает весьма высоким коэффициентом оптического поглощения, характерным для текстурированной поверхности, благодаря чему потери на отражение у рассматриваемого солнечного элемента минимальны.
Другое очевидное достоинство такого солнечного элемента — высокая объемная фоточувствительность, достигаемая за счет близкого расположения вертикальных участков p-n– перехода. Если w<
Улучшение оптических и фотоэлектрических характеристик солнечных элементов достигается также созданием в легированном и базовом слоях фотоэлемента тянущих электростатических полей (за счет, например, направленного изменения распределения примесей или градиента ширины запрещенной зоны по глубине элемента).
Влияние внутренних электрических полей на эффективность собирания и КПД полупроводниковых солнечных элементов исследовано достаточно хорошо. Первые работы были связаны с рассмотрением однородного поля с постоянными значениями подвижности и времени жизни носителей, не зависящими от концентрации примесей. Дальнейшее усложнение моделей солнечных элементов с встроенным полем привело к изучению неоднородных электрических полей и параметров диффузии, зависящих от пространственных координат. Однако проведенные исследования носили сугубо теоретический характер, а предлагаемые распределения примесей были трудно воспроизводимы.
Солнечные элементы практически всегда имеют внутренние электрические поля, возникающие в местах значительного перепада концентрации примеси по глубине кристалла или слоя, однако обычно эти поля носят случайный характер и являются следствием используемой технологии. В связи с этим возникает задача нахождения профилей концентрации примесей, значительно повышающих эффективность собирания носителей из легированного слоя и в то же время получаемых с помощью хорошо отработанных технологических методов.
Расчет и эксперимент, выполненные в одной из отечественных работ, показали, что пористая оксидная пленка, предварительно образованная на поверхности кремния методом анодного окисления, дает возможность даже при однократной термодиффузии получить двуслойную структуру легированной области. Часть диффузанта, например фосфора, проходя через поры, образует область низких концентраций примеси в зоне, близкой к p-n– переходу, другая часть, основная, диффундируя сквозь вещество пленки, создает область большой концентрации фосфора у поверхности элемента. Регулируя время и температуру диффузии, а также изменяя пористость пленки, можно достаточно плавно и точно управлять профилем распределения примесей в легированной области.
Оптимальный режим однократной диффузии через предварительно созданную оксидную пленку определенной пористости дает возможность получать p-n– переходы с разной глубиной залегания легированного слоя (0,3–1,3 мкм). При этом распределение примесей соответствует четко обозначенным двум областям высокой и низкой концентрации.
Другой технологический прием создания сложного распределения примесей — двойное легирование. Диффузионный слой, образованный в процессе первой термической диффузии, стравливается до глубины 0,5–0,6 мкм, затем осуществляется вторичное легирование по режиму однократной термодиффузии. Полученные p-n– переходы находятся на глубине 1,0–1,2 мкм от поверхности, при этом на глубине 0,3–0,7 мкм наблюдается резкий перепад концентрации примесей на два порядка. Профиль концентраций примесей строится на основе результатов измерений проводимости четырехзондовым методом при послойном анодном стравливании, глубина p-n– перехода определяется с помощью сферического шлифа.
Была обнаружена повышенная чувствительность экспериментальных солнечных элементов в коротковолновой области спектра, что объясняется преобладающим (над эффектом ухудшения параметров диффузии неосновных носителей в области повышенной концентрации) влиянием введенного тянущего поля сложной конфигурации.
Вольт-амперные характеристики солнечных элементов с двуслойной структурой легированной области также значительно лучше, чем у обычных. Плотность нагрузочного тока с единицы полезной площади таких солнечных элементов при глубине залегания p-n– перехода 1,0–1,2 мкм на 9–17 % выше, чем у элементов с экспоненциальным распределением примесей в легированном слое такой же глубины.
Таким образом, обоснованное теоретически и воспроизведенное экспериментально двухступенчатое распределение примесей приводит к значительному улучшению вольт-амперных и спектральных характеристик солнечных элементов даже при сравнительно большой глубине залегания p-n– перехода (lл—1,2 мкм), что позволяет не только увеличить КПД элементов, но и использовать для токосъема с легированного слоя простые, дешевые и надежные электрические контакты, получаемые, например, химическим осаждением никеля. Проблема создания надежных омических контактов, удешевления и автоматизации их нанесения — одна из наиболее сложных в современной технологии изготовления солнечных элементов.