Шрифт:
В связи с этим для многих исследователей было неожиданностью обнаруженное явление ухудшения свойств самих элементов непосредственно под действием оптической части солнечного излучения. В ходе первых опытов, когда изучалось совместное воздействие солнечного света, корпускулярного облучения и температуры, выяснились некоторые важные особенности одновременного влияния нескольких повреждающих факторов на свойства полупроводниковых материалов и солнечных элементов. Такие опыты достаточно полно отражают реальные условия эксплуатации солнечных элементов как в космических, так и в наземных условиях.
Было показано, что солнечные элементы с низким содержанием кислорода в исходных пластинах кремния, полученного методом бестигельной зонной плавки, обладают высокой степенью фотонной деградации — снижение тока, вызванное интенсивным освещением этих элементов, может составлять 10–12 %. На основании результатов экспериментов, проведенных без освещения, подобные солнечные элементы считались более радиационно стойкими по сравнению с элементами на основе выращенного методом Чохральского кремния с относительно высоким содержанием кислорода. Возможно, что причина ухудшения свойств солнечных элементов из кристаллов бескислородного кремния связана с большой плотностью дислокаций в них. Интенсивное освещение приводит к освобождению и активации захваченных дислокациями точечных дефектов, в состав которых входит атом бора. Было установлено, что дополнительное введение кислорода и углерода оказывает стабилизирующее действие на поведение солнечных элементов при освещении, особенно если общее содержание атомов углерода и кислорода в кремнии превышает 1017 см– 3.
В процессе фотонной деградации при внеатмосферной плотности потока падающего солнечного излучения насыщение наступает, как правило, после освещения в течение 20–40 ч при температуре, близкой к комнатной, а при повышении температуры элементов до 50–60o C и через более короткое время.
При освещении солнечного элемента или приложении к нему высокого напряжения смещения в прямом направлении для элементов п+— р– типа (верхний освещаемый n– слой получен диффузией фосфора) наблюдается уменьшение выходной мощности и заметное снижение длинноволновой чувствительности, а для элементов p-n– типа характерно (при наличии в спектре падающего света излучения с длиной волны 0,35— 0,45 мкм) обратное явление — увеличение выходной мощности и спектральной чувствительности в коротковолновой области. Ухудшение собирания носителей из базового слоя солнечных элементов п-p– типа обусловлено наличием рекомбинационного уровня, расположенного на 0,37 эВ ниже зоны проводимости. Обычно этот уровень электрически нейтрален, но при большой световой или электрической инжекции носителей заряда в материал становится активным. Возникновение этого рекомбинационного уровня связано с появлением в кремнии комплекса дефекта решетки с атомом серебра или, возможно, кластерных образований (ряда нарушенных атомов). Предотвращение попадания атомов серебра в базовый слой кремния, удаление механически поврежденного поверхностного слоя кремния до диффузии и проведение операции диффузии легирующей примеси при температуре 8750C и ниже позволяют значительно уменьшить эффект фотонной деградации. Например, для солнечных элементов, в процессе изготовления которых диффузия проходила при температуре 950oC, фотонная деградация (в условиях облучения светом вольфрамовой галогенной лампы с плотностью потока излучения 1000 Вт/м2) составляет от 3 до 6 %, при температуре диффузии 900o C — от 1 до 3 %, при 8750 C — всего 0,5 %.
Фотонную деградацию особенно необходимо учитывать при создании эталонных солнечных элементов для настройки имитаторов Солнца, которые должны отличаться высокой стабильностью свойств.
Нет сомнений, что обнаруженные сравнительно недавно новые типы деградации солнечных элементов подвергнутся тщательному и всестороннему изучению, будут найдены способы их предотвращения, и солнечные элементы сохранят за собой справедливое определение одного из самых эффективных, стабильных и надежных источников электроэнергии, полезно преобразующих излучение Солнца в удобную для человека электрическую форму энергии.
ЗАКЛЮЧЕНИЕ
Еще много непредвиденных трудностей, возникающих в ходе создания, усовершенствования и испытаний новых типов солнечных элементов в космосе и на Земле, предстоит преодолеть разработчикам.
Выяснилось, например, что атомарный кислород, существующий в околоземном космическом пространстве, активно разрушает каптоновую полимерную пленку, на которой укрепляются солнечные батареи большинства американских космических аппаратов, а электрические разряды, возникающие вследствие значительной разности потенциалов между накапливающими поверхностный заряд диэлектрическими покрытиями верхней и тыльной сторон элементов, могут привести к выходу из строя части батарей.
Правда, пути решения этих проблем уже намечены: следует, вероятно, заменить полимерную основу несущих панелей на стеклоткань; поверхностные же заряды с диэлектрических покрытий будут удаляться, если в состав полимеров или стекла ввести компоненты, несколько увеличивающие объемную проводимость, а на их внутреннюю и внешнюю стороны предварительно нанести прозрачные проводящие слои оксидов индия, олова или их смеси, причем эти слои должны быть электрически соединены между собой и с корпусом аппарата.
Прозрачные проводящие оксиды индия и олова представляют собой широкозонные полупроводниковые соединения, весьма подходящие для создания фотоактивных оптических окон в солнечных элементах на основе гетероструктур, и их применение в новых конструкциях солнечных элементов из кремния, фосфида индия, аморфного кремния становится все более распространенным. КПД солнечных элементов на основе гетероструктуры, образованной слоем из смеси оксидов олова и индия и монокристаллом фосфида индия, уже сейчас превысил 16 %, причем эти элементы отличает высокая стойкость к радиации и сравнительная простота в изготовлении.
На научных совещаниях советских специалистов, на встрече ученых стран СЭВ в Ашхабаде в сентябре 1986 г. на 17-й и 18-й конференциях по фотоэлектрическому методу преобразования солнечной энергии в США, в статьях, опубликованных в 1985–1987 гг., показано, что в этой новой, активно развивающейся области науки и техники получены значительные теоретические и практические результаты.
Предложены, в частности, солнечные элементы со сверхрешетками, образованные тончайшими чередующимися эпитаксиальными слоями на основе арсенида галлия и твердых растворов алюминий — галлий-мышьяк, галлий — индий — мышьяк и галлий — сурьма — мышьяк. Кроме высокого КПД, предложенные элементы отличает исключительная стойкость к радиации, ибо практически полное собирание неосновных носителей заряда происходит в них, даже если диффузионная длина носителей заряда после воздействия радиации составляет всего 300–500 А.