Шрифт:
Калориферы часто группируют по несколько штук как с параллельной установкой по воздуху, так и с последовательной или комбинированной. Если теплоносителем является пар, то калориферы устанавливают с вертикальным расположением трубок и подводом пара к верхнему патрубку; если теплоноситель – вода, то положение трубок должно быть горизонтальным, что обеспечивает удаление воздуха при наполнении калориферов водой и ее слив при прекращении работы системы.
Выпускаются также электрокалориферы (рис. 10).
Рис. 10. Электрический калорифер
Электрокалориферы состоят из стального кожуха с трубчатыми нагревательными элементами мощностью 1,6 или 2,5 кВт каждый. Для увеличения площади поверхности нагрева у нагревательных элементов образованы ребра диаметром 42 мм. Электрокалориферы могут работать как в ручном, так и в автоматическом режиме, поддерживая постоянную температуру воздуха на выходе или в помещении.
3.7. Канальные нагреватели
Нагреватель канальный служит для подогрева приточного (наружного) воздуха в воздуховодах (обычного круглого сечения). В центральных системах вентиляции канальные нагреватели используются в качестве вспомогательных, а в децентрализованных – в качестве основных подогревателей воздуха.
Корпус нагревателя выполняется из оцинкованной стали. Нагрев воздуха осуществляется ТЭНами. Обязательным является наличие защитных и регулирующих термостатов, что обеспечивает изделию высокую безопасность и возможность при этом функционировать в автоматическом режиме.
Канальные нагреватели снабжены двумя термостатами, предотвращающими перегрев: теплозащитным с автоматическим перезапуском (температура срабатывания +50 °C) и противопожарным с ручным перезапуском (температура срабатывания +110 °C). Канальные нагреватели рассчитаны на минимальную скорость воздушного потока 1,5 м/с и максимальную рабочую температуру выходящего воздуха 40 °C.
3.8. Воздухоохладители
Канальные воздухоохладители (рис. 11) предназначены для охлаждения и осушения приточного, рециркуляционного воздуха или их смеси в системах вентиляции и кондиционирования производственных, общественных или жилых зданий.
Рис. 11. Воздухоохладители КВО, КФО
В качестве хладагента в охладителях КВО могут использоваться вода или незамерзающие смеси. Максимально допустимое давление жидкости в них составляет 1,6 МПа.
В качестве хладагента в охладителях КФО используются фреоны. При поставке теплообменники наполнены инертным газом, который необходимо удалить во время подсоединения к холодильному контуру.
Конструкция охладителя представляет собой корпус, выполненный из оцинкованной стали, внутри которого устанавливаются теплообменник, каплеуловитель и поддон.
Теплообменник выполнен из медных трубок с алюминиевым оребрением, расположенных в шахматном порядке.
Фреоновый охладитель отличается конструкцией распределительного узла («паука») и спецификой подвода хладагента.
Коллекторы фреонового теплообменника выполняются из медных трубок.
Каплеуловитель (рис. 12) представляет собой набор специальных пластиковых пластин, эффективно улавливающих конденсат и собирающих его в поддон, расположенный в нижней части корпуса охладителя.
Рис. 12. Форма пластин каплеуловителя
Поддон дополнительно теплоизолирован и снабжен отводным патрубком для слива конденсата.
При монтаже воздухоохладителя необходимо обеспечить его горизонтальное положение.
3.9. Фильтры
По эффективности действия фильтры подразделяются на три класса. Фильтры I класса задерживают частицы пыли всех размеров (коэффициент очистки составляет не менее 0,99), фильтры II класса – частицы более 1 мкм (коэффициент очистки более 0,85), фильтры III класса – частицы размером более 10–50 мкм (коэффициент очистки не менее 0,60).
3.10. Оборудование для глушения шума
Уровень шума, создаваемого вентиляционными системами, является существенным критерием качества вентиляции. Источниками возникновения шума являются вентиляторы и электродвигатели, а также движение воздуха в воздуховодах и выход его из отверстий. Рассматривают два рода шума: аэродинамический и механический. Из всех источников его образования доминирующими принято считать вентиляторы, создающие аэродинамический шум. Причиной его появления является образование вихрей и их периодический срыв с лопаток рабочего колеса. Механический шум возникает в подшипниках, в приводе, в местах установки (креплений) вентиляционного агрегата на конструкциях зданий и т. д.