Вход/Регистрация
Теоретические основы и практические аспекты высокоинтенсивной интервальной тренировки
вернуться

Сиделев П.

Шрифт:

Рисунок 2.4 – Схема основных сигнальных путей, с помощью которых высокоинтенсивные упражнения вызывают большую митохондриальную адаптацию по сравнению с более низкой интенсивностью упражнений M. Atakan et al (2021). ADP-аденозиндифосфат (АДФ); AMP – аденозинмонофосфат (АМФ); AMPK, аденозин-монофосфатактивируемая протеинкиназа; ATP – аденозинтрифосфат (АТФ); Ca2, кальций; CaMPKII, кальций/кальмодулин-зависимая протеинкиназа II; Cr, креатин (Кр); H+, ион водорода; Pi, неорганический фосфат; SR; саркоплазматический ретикулум.

К важнейшим научным данным, получение которых не только существенно изменило многие широко распространенные представления, но и в значительной степени повлияло на методические подходы, в том числе и касающиеся программирования ВИИТ, безусловно, относятся результаты научных исследований последних десятилетий, направленных на изучение метаболической роли лактата.

Долгое время лактат считался токсичным побочным продуктом гликолиза, являющимся причиной усталости и отрицательно влияющим на результаты. Даже сегодня это мнение по-прежнему широко распространено. Однако, современные исследования определили лактату новое важное место и роль в метаболизме – это активный системный метаболит, перемещающийся внутри клеток, между клетками и между органами, способный не только использоваться для ресинтеза глюкозы (процесс глюконеогенеза), но и вовлекаться в энергетический обмен клеток, в том числе, окисляясь непосредственно в митохондриях (Brooks G. A., 2000; Ferguson, B. S., et al., 2018, Hashimoto T. et al., 2007.; О. В. Мещерякова и др., 2010, и др.). В работах G. Brooks et al. (1986, 2000, 2002 и др.) показано, что нормальные мышечные клетки производят лактат и в условиях покоя, и при умеренной нагрузке, а не только в условиях недостатка кислорода, т. е. значительная часть пирувата превращается в лактат, даже когда запас кислорода достаточен для поддержания аэробного метаболизма в митохондриях. (таблица 2.1).

Таблица 2.1 – Изменение представлений о лактате, его роли и функциях

Адаптация к тренировке состоит в повышении способности организма использовать лактат, окислять лактат как источник энергии, а не в повышении способности «терпеть» его наличие в гликолитических волокнах Поэтому важна возможность быстрого транспорта лактата, а, значит, совершенствования за счет тренировки механизмов этого транспорта Понимание внутриклеточных процессов помогает эффективнее строить тренировочный процесс и избегать факторов, нарушающих адаптацию.

Смене концепции понимания роли лактата способствовал ряд работ, посвященных изучению внутри- и межклеточных систем переноса этого соединения (Gladden, L.B., 2004). Использование современных биохимических, иммунногистохимических, радиоизотопных и других методов позволило доказать существование механизма восстановления лактата до гликогена – внутриклеточного лактатного шаттла (intracellular lactate shuttle) (G. A. Brooks, 2018), с помощью которого лактат экзо-, а также эндогенного происхождения способен транспортироваться в митохондрии клеток скелетных мышц, сердца и нейронов и там подвергаться окислению. Отдельные детали этих механизмов в настоящее время еще являются предметом дискуссий, но общие принципы теперь ясны, и эти принципы имеют важное значение для оптимизации спортивной подготовки, прежде всего, в видах на выносливость.

Сегодня лактат уже не рассматривается как «побочный» или «вредный» продукт гликолиза. Результаты исследований показали, что окисление лактата является одним из самых важных источников энергии: в окислительных мышечных волокнах лактат является предпочтительным источником топлива (Brooks G. A., 1986). Было четко продемонстрировано, что межклеточный транспорт лактата осуществляется с помощью специальных белков-транспортеров – монокарбоксилатных переносчиков (monocarboxylate transporters – MCTs) (рисунок 2.5). Среди 14 идентифицированных изоформ MCT две – MCT1 и MCT4 – присутствуют в плазматических мембранах скелетных мышц, выявлена их связь с физической нагрузкой: физические упражнения увеличивают концентрацию в скелетных мышцах как MCT1, так и MCT4 (Kitaoka Y. et al, 2012).

В настоящее время доказано существование митохондриальной ЛДГ, а также белков-транспортеров лактата не только на клеточных, но и на митохондриальных мембранах (Hashimoto, Brooks, 2008; Hashimoto et all., 2008; Lemire et all., 2008).

Установлено, что окисление лактата в митохондриях осуществляется митохондриальным лактат-окисляющим комплексом (mLOC) (рисунок 2.6): существование этого комплекса было доказано для клеток скелетных мышц (Hashimoto T. et all., 2006; Hashimoto T., Brooks G., 2008).

Рисунок 2.5. Схематическое представление межклеточного лактатного челнока и функций МСТ-переносчиков (Draoui and Feron, 2011). Лактат, продуцируемый в гликолитических волокнах, выделяется во внеклеточное пространство и в кровь посредством MCT4, а затем переносится в окислительные волокна посредством MCT1; После этого он превращается в пируват и окисляется в митохондриях для синтеза АТФ

Рисунок 2.6. Структура митохондриального лактат-окисляющего комплекса (T. Hashimoto et all., 2006). Схема, показывающая митохондриальный комплекс окисления лактата (mLOC): MCT1 «встроен» во внутреннюю мембрану митохондрии, тесно взаимодействуя с шапероновым белком CD147, и также связан с цитохром оксидазой (Cox) и с митохондриальной LDH (mLDH), расположенной на внешней стороне внутренней мембраны митохондрии. Лактат, который вырабатывается в цитозоле мышц, окисляется до пирувата через комплекс окисления лактата в митохондриях той же клетки. Сокращения: GP, глицеринфосфат; Mal-Asp, малат-аспартат; ETC, электрон-транспортная цепь; MCT, переносчик монокарбоксилата (лактата); mPC, митохондриальный переносчик пирувата; mLDH, митохондриальная лактатдегидрогеназа; TCA, цикл трикарбоновых кислот

Выявлено также, что превращение лактата в пируват и из пирувата регулируется специфическими изоформами лактатдегидрогеназы, тем самым обеспечивая образование высоко адаптируемой метаболической промежуточной системы. Относительно новой концепцией, вытекающей из комбинации сравнительных исследований, является концепция лактата, действующего как сигнальное соединение («лактормон»). В ряде работ показано, что лактат является главным глюконеогенным предшественником, а также сигнальной молекулой, которая обеспечивает адаптацию, вызванную физической нагрузкой (M. Nalbandian, 2016 и др.).

  • Читать дальше
  • 1
  • ...
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: