Шрифт:
Тревога!
Вереница катастроф, составляющая интригу фильма, начинается с разрушения ракетой российского спутника, находящегося на орбите, близкой к орбите МКС.
Подобное намеренное разрушение, к сожалению, происходит нередко: зафиксировано 54 таких случая, причем два последних имели место в результате пуска противоспутниковых ракет. Образуется крупное облако обломков разных размеров, представляющее опасность для спутников на соседних орбитах. Так, разрушение в 2007 году китайского спутника «Фэн Юнь-1С» оставило более двух тысяч крупных обломков на сильно накрененных орбитах высотой 860 км. Возможны и произвольные столкновения вроде того, которое произошло между спутником связи «Иридиум-33» и российским военным спутником «Космос-2251» 10 февраля 2009 года[9]. Но если риск столкновения вполне реален, то повторные столкновения с полуторачасовым интервалом, как в «Гравитации», — чистейшая фантазия. Давайте разберемся почему.
Для столкновения двух тел требуется их перемещение относительно друг друга. В повседневной жизни так происходит регулярно: каждый движущийся объект — пешеход, мотоцикл, автомобиль, грузовик — обладает свободой выбора скорости в интервале, заданном приводящей его в движение силой. В космосе же существует дополнительная тонкость: скорость тела на орбите не «свободна», а задается радиусом орбиты, если она круговая[10]. Представим два обращающихся вокруг Земли тела, оказывающихся одновременно в одном и том же месте. Если у них одинаковая орбита, то и скорость одинаковая, и они постоянно находятся очень близко друг от друга, но неподвижны относительно друг друга, так что их столкновение невозможно! Чтобы эти два тела столкнулись, у них должны быть разные скорости, и значит, и разные (при этом пересекающиеся) орбиты. Что происходит тогда?
Анализ 216 зафиксированных на сегодняшний день случаев фрагментации вследствие взрывов или столкновений чрезвычайно поучителен и указывает на два обстоятельства. Во-первых, спутник разваливается на большое количество обломков, скорость которых увеличивается или уменьшается на несколько сотен метров в секунду (до тысяч метров в секунду в случае взрыва) относительно первоначальной орбитальной скорости. Значительное приращение скорости выражается в существенном изменении орбиты объекта. Поэтому осколок, набирающий при удалении от орбиты МКС скорость 100 м/с, достигает апогея в 360 км над первоначальной орбитой, и его период обращения увеличивается на 4 минуты. Иначе говоря, облако осколков достигнет следующей орбиты менее чем через 4 минуты после МКС. Отсюда абсолютная невозможность нового столкновения после полного обращения на дополнительной орбите, показанного в «Гравитации», где командир Мэтт Ковальски[11] предостерегает о возвращении осколков каждые полтора часа[12].
Во-вторых, осколки, образовавшиеся в результате фрагментации объекта, имеют самую разную форму и массу, но в целом более высокий «баллистический коэффициент», чем у целого спутника или МКС. Этот коэффициент есть количественное выражение трения в атмосфере на траектории спутника или осколков. На такой высоте атмосфера, конечно, чрезвычайно разрежена, но все же не полностью отсутствует. Поэтому спутник испытывает трение, сила которого пропорциональна произведению площади, перпендикулярной скорости, на коэффициент сопротивления формы — то есть связана с формой объекта. Торможение, вызванное трением, равно силе, поделенной на массу спутника. Значит, оно пропорционально отношению поверхности и массы с учетом коэффициента сопротивления формы; это отношение и называется баллистическим коэффициентом. Чем он выше, тем быстрее спутник теряет высоту относительно своей первоначальной орбиты.
Классический спутник имеет баллистический коэффициент порядка 0,01[13]. У обломка же — например, у куска алюминиевой обшивки толщиной несколько миллиметров — баллистический коэффициент может быть в десять раз больше. Это значит, что торможение обломка ввиду силы трения в атмосфере будет значительнее, чем торможение МКС: он будет терять все больше высоты на каждой орбите. Скажем, разница высот между МКС и типовым обломком на общей орбите составит порядка нескольких сот метров! Для сравнения: МКС ежемесячно теряет 2 км высоты. Если бы МКС пролетала в некий момент времени через большое облако обломков, то впоследствии орбита последних оказывалась бы более разбросанной во времени — плюс-минус 4 минуты — и в пространстве — не менее чем на несколько сот метров ниже станции. В отличие от того, что показано в фильме, вероятность столкновения при последующем сближении была бы крайне мала. Добавим к этому, что Ковальски сообщает не только о периоде обращения обломков, но и об их скорости — 80 тыс. км/ч, что вдвое больше скорости вращения Земли! Иначе говоря, обломки должны были бы вообще унестись вдаль без малейшего шанса на возвращение!
Завершая эту тему, отметим, что засорение околоземного пространства космическим мусором вызывает все большую озабоченность. Считается, что вероятность утраты спутника, запущенного на замусоренную орбиту, составляет порядка 5 % за всю продолжительность его службы. Это еще приемлемо, но пренебрегать этим уже нельзя. Беда в том, что каждый удар, каждое столкновение увеличивают количество обломков, из-за чего через несколько десятилетий возросшая опасность потери спутников заставит вообще отказаться от их запуска. Растущее количество космического мусора — реальная проблема, и космические агентства начинают закладывать в свои расчеты «загрязнение космической среды», хотя до «уборки» в космосе дело еще не дошло…
Невесомость и гравитация
Странно, что фильм назвали «Гравитация», ведь почти все его действие происходит в невесомости при вроде бы полностью отсутствующей силе тяжести. Думаете, космонавты на МКС парят совершенно свободно ввиду нулевого тяготения? Ничего подобного. Притяжение Земли остается ощутимым на любом удалении от ее центра, хотя и ослабевает в зависимости от расстояния. МКС обращается на высоте примерно 400 км, что в 50 раз выше самой высокой горы, но составляет всего лишь 1/16 земного радиуса. На этой высоте сила тяжести всего на 12 % слабее, чем на поверхности Земли. Но раз гравитация в космосе не исчезает, то как объяснить свободное парение астронавтов, словно на них не действует тяготение?
Чтобы понять происхождение невесомости, вспомним для начала, что испытать ее можно, даже не поднимаясь на орбиту Земли: достаточно погрузиться в «Аэробус А300 Zero-G» компании Novespace[14]. Этот самолет, специально оборудованный для научных экспериментов, описывает параболические траектории, позволяющие каждому испытать свободное падение продолжительностью в два десятка секунд. Пассажиры, свободно парящие в салоне, испытывают на себе то, что составляло сущность мысленного эксперимента Эйнштейна в 1907 году. В ходе работы над проблемой гравитации его посетила «счастливейшая во всей (его) жизни» идея: он заметил, что «гравитация имеет только относительное существование <…> Для наблюдателя в состоянии свободного падения… никакого гравитационного поля не существует». Эта идея опирается на тот факт — экспериментально подтвержденный с высокой точностью спутником «Микроскоп» в 2017 году, — что в гравитационном поле все тела падают одинаково, независимо от их массы и состава. Знаменитый мысленный эксперимент Галилея (возможно, апокрифический) со свободным падением тел с высоты Пизанской башни именно это и демонстрирует. Брошенные с одинаковой высоты и без замаха большое каменное ядро и легкий деревянный шар того же размера достигают земли одновременно. Дэвид Скотт, астронавт «Аполлона-15», повторил этот эксперимент на Луне, где отсутствует атмосфера, мешающая движению. Перед работающей камерой соколиное перо (кстати, посадочный модуль назывался «Фэлкон» — «сокол») и геологический молоток коснулись лунной поверхности одновременно.