Шрифт:
Так вот в чем фокус! Свет попадает на зоны наилучшего видения (которые как раз и обеспечивают самое острое зрение) не через центр роговицы, а через ее края, которые хотя и не совсем плоские, но имеют очень небольшую кривизну. Но ведь плоская (или хотя бы почти плоская) роговица — это как раз то, что нужно для одинаковой работы глаза и под водой, и в воздухе.
Правда, если разобраться тщательнее, можно подметить, что не так все просто (но тем и интереснее!). Ведь поперечник шарообразного хрусталика довольно велик. Значит, свет на него может попадать через разные части роговицы. Это только центральная часть светового пучка, попадающего на зону наилучшего видения, проходит через уплощенную часть роговицы. Но на ту же часть сетчатки свет может попасть, пройдя через центральную часть роговицы и краевую часть хрусталика: рисунок наглядно показывает и этот путь тоже. А центральная часть роговицы выпуклая, следовательно, на воздухе эта часть светового пучка будет сфокусирована неправильно, и качество изображения заметно ухудшится.
Все это так и могло бы быть, если бы не еще одна занятная особенность дельфиньего глаза: форма его зрачка. Зрачок — это отверстие в специальной непрозрачной — радужной — оболочке глаза (радужке). Она выполняет ту же роль, что и диафрагма в фотоаппарате: меняя размер прозрачного отверстия, она регулирует количество света, попадающего в глаз, и таким образом подстраивает его к условиям более или менее яркого освещения. Как только освещенность окружающей обстановки увеличится, мозг посылает команду к тонким мышечным волокнам, «вмонтированным» в радужку, и они, сокращаясь, сужают отверстие зрачка, избавляя глаз от избыточного света; уменьшится освещенность — и отверстие автоматически расширится, чтобы в глаз попало достаточно света.
Форма зрачкового отверстия различна у разных животных. У нас с вами зрачок имеет вид круглого отверстия в центре радужки: чем сильнее освещенность, тем меньше диаметр отверстия. У кошки — всем известно — зрачок имеет вид вертикальной щели: чем сильнее освещенность, тем меньше ширина щели, а ее высота почти не меняется. У других животных встречаются зрачки и прямоугольной, и треугольной формы — все зависит от того, как вмонтированы в радужку мышечные волокна, сужающие отверстие.
Но у дельфина зрачок не похож ни на человеческий, ни на кошачий, ни на чей-либо еще. Когда увеличивается освещенность, то из верхней части радужки выдвигается выступ; его называют оперкулюм (звучит очень неуклюже, потому что слово латинское; но поскольку ничего подобного ни у каких других животных не наблюдали, то даже русского названия для него не придумали). Оперкулюм сужает зрачок таким образом, что он приобретает вид серповидной щели. Чем сильнее освещенность, тем уже щель. И если освещенность достаточно высокая, то нижний край оперкулюма выдвигается настолько, что смыкается с противоположным краем зрачкового отверстия. Щель исчезает, и вместо нее остаются только два отдельных отверстия: в передней и в задней части радужки.
Каждое из двух зрачковых отверстий расположено как раз там, где центральная часть светового пучка должна пройти через уплощенную часть роговицы, чтобы попасть на соответствующую зону наилучшего видения. При этом краевые части светового пучка, проходящие через искривленную часть роговицы, отсекаются. Изображение в зонах наилучшего видения не размывается плохо сфокусированным светом, проходящим через края хрусталика.
Правда, такое сильное сужение зрачка, при котором он распадается на два отдельных отверстия, происходит только при достаточно ярком освещении; в сумерках зрачок расширяется и пропускает весь попадающий на глаз свет. Ну и что же! Ведь сужение зрачка, позволяющее свету попадать в глаз только через краевые части роговицы, необходимо дельфину только для зрения в воздухе, над водой. А именно над водой освещенность высока, и зрачок приобретает вид двух отверстий. Под водой же освещенность резко падает с каждым метром глубины (ведь вода намного менее прозрачна, чем воздух). Там зрачок дельфина сильно расширяется, и свет попадает в глаз через всю роговицу — и через ее уплощенные края, и через центральную, выпуклую часть, чтобы уловить побольше света в подводных сумерках. Но под водой-то это не страшно: там преломления света на роговице почти нет, и какой она формы — совершенно не важно.
Подведем некоторые итоги всему тому, что рассказано об устройстве глаза дельфина. Одинаковая пригодность его глаза для зрения и в воде, и в воздухе обеспечивается не какой-то одной его особенностью, а изящной комбинацией нескольких необычных особенностей строения: наличием в сетчатке двух зон наилучшего видения, шаровидной формой хрусталика, благодаря которой каждая из этих зон «смотрит» сквозь лежащий напротив нее край роговицы; меньшей кривизной этих краевых частей роговицы и наличием двух зрачковых отверстий, которые пропускают только тот свет, который проходит через мало искривленную роговицу. Все это вместе и создает уникальную конструкцию дельфиньего глаза.
Вот что, однако, еще интересно. Если у дельфина две зоны наилучшего видения, то какая из них на самом деле используется, чтобы в деталях рассмотреть какой-либо предмет? Иначе говоря, что считать для этого животного направлением взора: то, в котором «смотрит» передняя зона наилучшего видения, или то, куда «смотрит» задняя? Оказалось, и то и другое. То есть у дельфина могут быть сразу два направления взора, а может использоваться преимущественно одно или другое. Причем эти два направления взора по-разному используются под водой и на воздухе. Если дельфин поднимает голову над поверхностью воды, чтобы рассмотреть какой-то надводный предмет — например, человека, стоящего у края бассейна, то он повернет голову так, чтобы объект его интереса оказался прямо перед ним. При этом человеку, в свою очередь, очень хорошо видно, что на него уставились оба глаза дельфина, от которых линия взора проходит немного ниже рострума. Ясно, что в данном случае рассматриваемый человек оказывается в передней зоне наилучшего видения. А вот если под водой дельфин заинтересовался, например, подплывшим к нему аквалангистом и хочет рассмотреть его получше, то он повернется к человеку боком и будет рассматривать его не двумя, а одним глазом. При этом человек окажется в заднебоковой зоне наилучшего видения.
Значит ли это, что передняя зона наилучшего видения предназначена только для надводного, а заднебоковая — только для подводного зрения? Вовсе нет. В иных ситуациях и под водой очень эффективно используется передняя зона. Ведь она направлена туда, куда движется животное. А для быстро движущегося дельфина пространство впереди по ходу движения всегда представляет собой зону повышенного интереса, ведь именно там чаще всего появляется что-то новое; именно туда надо смотреть особенно внимательно. Тут уж главную роль играет именно передняя зона наилучшего видения.
И в заключение несколько слов о зрительных способностях разных дельфинов и других китообразных, о том, насколько острое у них зрение. Выше мы описывали, как измеряется острота зрения в экспериментах на специально обученных дельфинах. Но такие детальные измерения можно выполнить не на любом виде: они требуют длительного содержания животного в неволе и продолжительного предварительного обучения, а условия для этого есть не всегда. Можно ли найти более простой и доступный метод? Оказывается, можно. Для этого нужно у погибшего дельфина извлечь сетчатку глаза, сделать из нее — так, как описано выше, — препарат, который позволит под микроскопом увидеть нервные клетки сетчатки, и подсчитать, сколько таких клеток приходится на единицу площади сетчатки, то есть какова плотность расположения клеток. Зная плотность клеток, можно рассчитать, на каком расстоянии друг от друга находятся соседние клетки: чем плотнее они расположены, тем это расстояние меньше. А расстояние между соседними нервными клетками сетчатки как раз и определяет в значительной степени остроту зрения: если расстояние маленькое, то клетки могут передать информацию о мелких деталях изображения; если расстояние большое, то возможна передача информации только о более крупных деталях. Дело обстоит примерно так же, как в фотоаппарате: если он заряжен мелкозернистой пленкой, то изображение получается лучше, а если пленка крупнозернистая, то изображение похуже, погрубее. Разумеется, для лучшей остроты зрения, как и для качественной фотографии, нужна не только «мелкозернистая» сетчатка, но и хорошая фокусировка; но мы уже выяснили, что с этим у дельфинов все в порядке, так что по «зернистости» (т. е. плотности нервных клеток) сетчатки неплохо можно оценить остроту зрения.